• Title/Summary/Keyword: biomechanical systems

검색결과 81건 처리시간 0.072초

Assessment of Xenogenic Bone Plate and Screw using Finite Element Analysis

  • Heo, Su-young;Lee, Dong-bin;Kim, Nam-soo
    • 한국임상수의학회지
    • /
    • 제35권3호
    • /
    • pp.83-87
    • /
    • 2018
  • The aim of this study was to evaluate the biomechanical behavior of xenogenic bone plate system (equine bone) using a three-dimensional finite element ulna fracture model. The model was used to calculate the Von Mises stress (VMS) and stress distribution in fracture healing periods with metallic bone plate and xenogenic bone plate systems, which are installed while the canine patient is standing. Bone healing rate (BHR) (0%) and maximum VMS of the xenogenic plate was similar to the yield strength of equine bone (125 MPa). VMS at the ulna and fracture zones were higher with the xenogenic bone plate than with the metallic bone plate at BHRs of 0% and 1%. Stress distributions in fracture zone were higher with the xenogenic bone plate than the metallic bone plate. This study results indicate that the xenogenic bone plate may be considered more beneficial for callus formation and bone healing than the metallic bon plate. Xeonogenic bone plate and screw applied in clinical treatment of canines may provide reduced stress shielding of fractures during healing.

Use of cone-beam computed tomography and three-dimensional modeling for assessment of anomalous pulp canal configuration: a case report

  • Sinanoglu, Alper;Helvacioglu-Yigit, Dilek;Mutlu, Ibrahim
    • Restorative Dentistry and Endodontics
    • /
    • 제40권2호
    • /
    • pp.161-165
    • /
    • 2015
  • Three-dimensional (3D) reconstruction of cone-beam computed tomography (CBCT) scans appears to be a valuable method for assessing pulp canal configuration. The aim of this report is to describe endodontic treatment of a mandibular second premolar with aberrant pulp canal morphology detected by CBCT and confirmed by 3D modeling. An accessory canal was suspected during endodontic treatment of the mandibular left second premolar in a 21 year old woman with a chief complaint of pulsating pain. Axial cross-sectional CBCT scans revealed that the pulp canal divided into mesiobuccal, lingual, and buccal canals in the middle third and ended as four separate foramina. 3D modeling confirmed the anomalous configuration of the fused root with a deep lingual groove. Endodontic treatment of the tooth was completed in two appointments. The root canals were obturated using lateral compaction of gutta-percha and root canal sealer. The tooth remained asymptomatic and did not develop periapical pathology until 12 months postoperatively. CBCT and 3D modeling enable preoperative evaluation of aberrant root canal systems and facilitate endodontic treatment.

손목관절의 기능적 운동 특성의 동작 분석 (Functional Motion Analysis of Wrist Joints)

  • 한정수
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권6호
    • /
    • pp.543-548
    • /
    • 2003
  • Injuries of wrist in upper extremity is common onset in industrialized world. The development of joint arthroplasty and mechanical joint is area of research for biomechanical engineer and surgeon for a decade. Therefore. the knowledge of characteristic of joint motion is essential to develop the artificial wrist joint. In this study. the joint motions of wrist required for activities of daily living (ADLs). including personal hygiene and care. and general home activity were measured using flexible electrogoniometer. Total of 25 different daily activities were separated into four groups and tested on 15 subjects who did not show any abnormality of their joint functions. The maximum functional range of motion required for ADLs were obtained and standardized for analysis and comparison. Also. a least functional range of motion for ADLs were investigated. Results revealed that any significant differences were not found in least functional range of motion between left and right wrist to perform ADLs. However. a significant difference was found in different ADLs. Therefore. least range of motion obtained in this study can be used as basic data to design artificial joint and set a goal for surgeon to achieve appropriate treatment from patients.

Experimental validation of smartphones for measuring human-induced loads

  • Chen, Jun;Tan, Huan;Pan, Ziye
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.625-642
    • /
    • 2016
  • The rapid technology developments in smartphones have created a significant opportunity for their use in structural live load measurements. This paper presents extensive experiments conducted in two stages to investigate this opportunity. Shaking table tests were carried out in the first stage using selected popular smartphones to measure the sinusoidal waves of various frequencies, the sinusoidal sweeping, and earthquake waves. Comparison between smartphone measurements and real inputs showed that the smartphones used in this study gave reliable measurements for harmonic waves in both time and frequency domains. For complex waves, smartphone measurements should be used with caution. In the second stage, three-dimensional motion capture technology was employed to explore the capacity of smartphones for measuring the movement of individuals in walking, bouncing and jumping activities. In these tests, reflective markers were attached to the test subject. The markers' trajectories were recorded by the motion capture system and were taken as references. The smartphone measurements agreed well with the references when the phone was properly fixed. Encouraged by these experimental validation results, smartphones were attached to moving participants of this study. The phones measured the acceleration near the center-of-mass of his or her body. The human-induced loads were then reconstructed by the acceleration measurements in conjunction with a biomechanical model. Satisfactory agreement between the reconstructed forces and that measured by a force plate was observed in several instances, clearly demonstrating the capability of smartphones to accurately assist in obtaining human-induced load measurements.

Cutting-edge Piezo/Triboelectric-based Wearable Physical Sensor Platforms

  • Park, Jiwon;Shin, Joonchul;Hur, Sunghoon;Kang, Chong-Yun;Cho, Kyung-Hoon;Song, Hyun-Cheol
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.301-306
    • /
    • 2022
  • With the recent widespread implementation of Internet of Things (IoT) technology driven by Industry 4.0, self-powered sensors for wearable and implantable systems are increasingly gaining attention. Piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), which convert biomechanical energy into electrical energy, can be considered as efficient self-powered sensor platforms. These are energy harvesters that are used as low-power energy sources. However, they can also be used as sensors when an output signal is used to sense any mechanical stimuli. For sensors, collecting high-quality data is important. However, the accuracy of sensing for practical applications is equally important. This paper provides a brief review of the performance advanced by the materials and structures of the latest PENG/TENG-based wearable sensors and intelligent applications applied using artificial intelligence (AI)

막 기반 마찰전기 나노 발전기: 총설 (Membrane Based Triboelectric Nanogenerator: A Review)

  • 라비아 카갛니;라즈쿠마 파텔
    • 멤브레인
    • /
    • 제33권2호
    • /
    • pp.53-60
    • /
    • 2023
  • 기계적 에너지는 생물학 및 환경 시스템에서 트라이보 전기 나노제너레이터(TENG)로 얻을 수 있다. 웨어러블 전자제품에서 TENG는 진동 센서에 적용된 인간의 움직임에서 생체역학적 에너지를 수확할 수 있다는 점에서 많은 의미를 지닌다. 웨어러블 TENG은 습기에 취약하며, 폴리테트라플루오로에틸렌(PTFE)은 이러한 용도에 사용되는 우수한 소수성 물질이다. 높은 전기 음성 불소 원자의 존재는 매우 낮은 표면 에너지로 이어진다. 동시에 미세다공막 표면에 전자를 효율적으로 포획함으로써 소자의 성능이 증가한다. PTFE에 비해 상대적으로 적은 플루오라이드 원자의 존재로 인해 폴리비닐리덴 플루오라이드(PVDF)에서도 유사한 거동을 보인다.

Spring rod를 사용한 척추경 나사못과 동반 시술된 Flexible cage의 생체역학적 효과 (Biomechanical Efficacy of a Combined Flexible Cage with Pedicle Screws with Spring rods: A Finite Element Analysis)

  • 김영현;박은영;김원현;황성필;박경우;이성재
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권1호
    • /
    • pp.9-15
    • /
    • 2017
  • Recently, flexible cages have been introduced in an attempt to absorb and reduce the abnormal load transfer along the anterior parts of the spine. They are designed to be used with the pedicle screw systems to allow some mobility at the index level while containing ROM at the adjacent level. In this study, a finite element (FE) study was performed to assess biomechanical efficacies of the flexible cage when combined with pedicle screws with flexible rods. The post-operated models were constructed by modifying the L4-5 of a previously-validated 3-D FE model of the intact lumbar spine (L2-S1): (1) Type 1, flexible cage only; (2) Type 2, pedicle screws with flexible rods; (3) Type 3, interbody fusion cage plus pedicle screws with rigid rods; (4) Type 4, interbody fusion cage plus Type 2; (5) Type 5, Type 1 plus Type 2. Flexion/extension of 10 Nm with a compressive follower load of 400N was applied. As compared to the Type 3 (62~65%) and Type 4 (59~62%), Type 5 (53~55%) was able to limit the motion at the operated level effectively, despite moderate reduction at the adjacent level. It was also able to shift the load back to the anterior portions of the spine thus relieving excessively high posterior load transfer and to reduce stress on the endplate by absorbing the load with its flexible shape design features. The likelihood of component failure of flexble cage remained less than 30% regardless of loading conditions when combined with pedicle screws with flexible rods. Our study demonstrated that flexible cages when combined with posterior dynamic system may help reduce subsidence of cage and degeneration process at the adjacent levels while effectively providing stability at the operated level.

티타늄과 탄소 섬유 강화 PEEK로 구성된 요추 유합술용 연결봉의 의공학적 영향에 대한 비교 분석 (Comparative Analysis of Biomechanical Behaviors on Lumbar with Titanium and Carbon Fiber Reinforced PEEK Connecting Rods for Fusion Surgery)

  • 서혜성;강해성;전흥재
    • Composites Research
    • /
    • 제34권3호
    • /
    • pp.186-191
    • /
    • 2021
  • 요추에 퇴행이 발생하였을 때 이를 치료하기 위해 요추 유합술이 시행된다. 유합술은 척추체 사이의 추간판을 제거하고 뼈 그래프트 등을 삽입하여 굳혀 하나 이상의 분절을 완전히 고정시켜 척추의 안정성을 복원한다. 둘 이상의 척추체가 단단히 유합될 수 있게끔 척추체를 고정하는 수단으로 척추경 나사못과 연결봉이 환자의 체내에 삽입된다. 본 연구에서는 중증 요추 퇴행성 질환의 치료에 쓰이는 척추 유합술에서 사용하는 척추경 나사못 구조물이 적용된 총 7개의 환자 맞춤형 요추 유한 요소 모델을 생성하였다. 생성한 모델에 각각 티타늄과 CFR-PEEK로 구성된 연결봉을 구성하였다. 척추의 4가지 대표적 거동에 대해 유한요소해석과 통계적 분석을 진행하여 연결봉의 재질이 척추 상태에 미치는 의공학적 영향을 조사하였다. 인접 분절의 추간판 내 압력과 각 분절의 관절 구동 범위가 의공학적 영향을 확인하기 위한 지표로 사용되었다. 연결봉에 CFR-PEEK를 사용한 경우 Ti 연결봉에 비해 인접 분절의 추간판 내 압력은 감소하였고 각 분절의 관절 구동 범위는 증가하였다. 그러나 모든 하중조건에서 통계학적으로 유의미한 경향성 차이는 관찰되지 않았다.

보병용 배낭의 휴대 및 이동 성능에 관한 연구 (A study of the Infantry Backpack System for Portability and Mobility Performance)

  • 정성학
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권3호
    • /
    • pp.155-161
    • /
    • 2014
  • 본 연구의 목적은 보병용 휴대 배낭 설계를 위하여 인체공학적인 물자취급 중량을 검토하여 휴대 및 이동성능에 기초한 한계하중을 분석하는데있다. 제품설계시 인체공학적 설계가이드라인과 운용현황을 조사분석하여 효율적인 운용성능을 위한 기초자료로 제공하고자 한다. 본 연구에서는 인력물자취급시 역사적 관점에서 생리학적 연구방법, 생체역학적 연구방법, 인체심리학적 연구방법들을 검토하여 보병용 휴대배낭의 휴대성 및 이동성을 분석하였다. 휴대성과 이동성 간의 관계를 분석한 결과, 단거리의 짧은 기동거리에서는 생체역학적 기준치를, 1-2시간의 중간인 이동에서는 인체심리학적 기준치를, 4시간 혹은 그 이상의 장거리에서는 생리학적 기준치를 적용하여 각각의 가이드라인들을 상호 절충하는 것이 필요한 것으로 판단된다. 본 연구에서는 보병의 물자취급시 4가지 연구방법을 제안하였다. 이러한 기존의 설계 가이드라인을 분석한 결과, 병사의 인체사이즈 측면에서는 5%tile의 경우 -091kg으로 여유중량이 부족하지만, 95%tile에서는 34.17kg까지 여유중량이 발생하는 것으로 판단된다. 이러한 연구결과는 물자취급시 편하고, 효율적인 운용성능을 창출하기 위해서 휴대중량과 이동거리에 따라 여유중량을 관리해야 할 것으로 판단된다.

High Performance Flexible Inorganic Electronic Systems

  • 박귀일;이건재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF