• Title/Summary/Keyword: biomaterials

Search Result 2,062, Processing Time 0.033 seconds

Correlations between the Growth Period and Fresh Weight of Seed Sprouts and Pixel Counts of Leaf Area

  • Son, Daesik;Park, Soo Hyun;Chung, Soo;Jeong, Eun Seong;Park, Seongmin;Yang, Myongkyoon;Hwang, Hyun-Seung;Cho, Seong In
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.318-323
    • /
    • 2014
  • Purpose: This study was carried out to predict the growth period and fresh weight of sprouts grown in a cultivator designed to grow sprouts under optimal conditions. Methods: The temperature, light intensity, and amount of irrigation were controlled, and images of seed sprouts were acquired to predict the days of growth and weight from pixel counts of leaf area. Broccoli, clover, and radish sprouts were selected, and each sprout was cultivated in a 90-mm-diameter Petri dish under the same cultivating conditions. An image of each sprout was taken every 24 hours from the 4th day, and the whole cultivating period was 6 days, including 3 days in the dark. Images were processed by histogram inspection, binary images, image erosion, image dilation, and the overlay image process. The RGB range and ratio of leaves were adjusted to calculate the pixel counts for leaf area. Results: The correlation coefficients between the pixel count of leaf area and the growth period of sprouts were 0.91, 0.98, and 0.97 for broccoli, clover, and radish, respectively. Further, the correlation coefficients between the pixel count of leaf area and fresh weight were 0.90 for broccoli, 0.87 for clover, and 0.95 for radish. Conclusions: On the basis of these results, we suggest that the simple image acquisition system and processing algorithm can feasibly estimate the growth period and fresh weight of seed sprouts.

Stability in Plasma and Intracellular Uptake of Thermally Denatured Protein-coated anionic Liposomes (열변성 단백질이 결합된 음이온성 리포솜의 혈장 내 안정성 및 세포 내 이입 평가)

  • Lee, Mi-Jung;Hwang, In-Young;Kim, Sung-Kyu;Jung, Suk-Hyun;Jeong, Seo-Young;Seong, Ha-soo;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.6
    • /
    • pp.423-429
    • /
    • 2009
  • Liposomes have been used as one of the efficient carriers for drug delivery. In this study, anionic liposomes of which surface was modified by using both electrostaic interaction between anionic liposomes and cationically charged BSA molecules at lower pH than isoelectric point (pI) of BSA and denaturation of the BSA-coated liposomes by thermal treatment. The thermally denatured BSA-coated liposomes (DBAL) had mean particle diameter of 125.2${\pm}$1.7 nm and zeta potential value of -22.4${\pm}$4.5 mV. Loading efficiency of model drug, doxorubicin (DOX), into liposomes was 83.0${\pm}$2.6%. Results of in vitro stability study of DBAL in blood plasma showed that the mean particle diameter of DBAL 400 did not increase in blood plasma and adsorption of plasma protein was much less than plain or anionic liposomes. Intracellular uptake of DBAL 400 evaluated by confocal microscopy observation was higher than that of PEG liposomes.

Effect of Different Delignification Degrees of Korean White Pine Wood on Fibrillation Efficiency and Tensile Properties of Nanopaper (잣나무의 탈리그닌 정도가 습식 해섬처리 효율 및 나노종이 인장 특성에 미치는 영향)

  • Park, Chan-Woo;Lee, Seo-Ho;Han, Song-Yi;Kim, Bo-Yeon;Jang, Jae-Hyuk;Kim, Nam-Hun;Lee, Seung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this study, the effect of delignification degree of Korean white pine wood on fibrillation efficiency by wet disk-milling (WDM) and the properties of thus-obtained microfibrillated cellulose (MFC) were investigated. The effect on the tensile properties of nanopaper was also investigated. The delignification degree was adjusted by repeating 'Wise' method using sodium chlorite and acetic acid. The increase in delignification degree improved fibrillation efficiency, showing the smaller nanofiber dimension at the shorter WDM time. The filtration time of MFC water suspension was increased by the increase of WDM cycles. Tensile strength and elastic modulus of the nanopaper were increased by increasing delignification degree and disk-milling cycles.

Quantitative Evaluation of Wear Stress Due to Traffic in Zoysia japonica cv. 'Zenith' Using Non-Destructive RGB Imagery Analysis (비파괴적 RGB 이미지 분석을 활용한 들잔디 '제니스'에서의 답압으로 인한 마모 스트레스 정량적 분석)

  • Jae Gyeong Jung;Eun Seol Jeong;Eon Ju Jin;Jun Hyuck Yoon;Kwon Seok Jeon;Jin Joong Kim;Eun Ji Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.2
    • /
    • pp.121-130
    • /
    • 2023
  • The RGB (red, green, and blue) imagery analysis is an important remote sensing tool, which estimates the effect of environmental stress on turfgrass growth and physiology. Therefore, this study investigated the effect of continuous wear stress treatment on Zoysia japonica through RGB imagery analysis. The results of the growth measurement showed that the plant height substantially decreased, after nine hours of treatment with no considerable difference thereafter. Dry weight measurement showed a substantial difference in the morphological growth characteristics of the aerial part of the turfgrass, but none in the stolon and root zone. This could be attributed to the short period of compaction treatment. The ROS (reactive oxygen species) analysis showed that ROS rapidly increased due to wear stress treatment. The MDA content increased during the traffic process, whereas the green pixels increased and decreased repeatedly; however, overall, the trend declined but the overall trend decreased. Thus, this study confirmed that MDA was effective in reflecting the wear stress of turfgrass; however, it could through RGB image analysis.

Overexpression of TMP21 Could Induce not only Downregulation of TrkA/ERK Phosphorylation but also Upregulation of p75NTR/RhoA Expression on NGF Receptor Signaling Pathway (γ-Secretase 활성억제단백질인 TMP21의 과발현이 신경세포주에서 NGF 수용체 신호전달과정에 미치는 영향)

  • Choi, Sun-Il;Jee, Seung-Wan;Her, Youn-Kyung;Kim, Ji-Eun;Nam, So-Hee;Hwang, In-Sik;Lee, Hye-Ryun;Goo, Jun-Seo;Lee, Young-Ju;Lee, Eon-Pil;Choi, Hae-Wook;Kim, Hong-Sung;Lee, Jae-Ho;Jung, Young-Jin;Lee, Su-Hae;Shim, Sun-Bo;Hwang, Dae-Youn
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1134-1141
    • /
    • 2011
  • Transmembrane protein 21 (TMP21) is a member of the p24 cargo protein family and has been shown to modulate ${\alpha}$-secretase-mediated A${\beta}$ production which was specifically observed in the brains of subjects with Alzheimer's disease (AD). In order to investigate whether TMP21 could affect nerve growth factor (NGF) receptor signaling pathway, the alteration of NGF receptors and their downstream proteins were detected in TMP21 over-expressed cells. CMV/hTMP21 vector used in this study was successfully expressed into TMP21 proteins in B35 cells after lipofectamin transfection. Expressed TMP21 proteins induced the down-regulation of ${\gamma}$-secretase complex components including Presenlin-1 (PS-1), PS-2, Nicastrin (NST), Pen-2 and APH-1. Also, the expression level of NGF receptor $p75^{NTR}$ and RhoA were significantly higher in CMV/hTMP21 transfectants than vehicle transfectants, while their levels returned to vehicle levels after NGF treatment. However, the phosphorylation of NGF receptor TrkA was dramtically decreased in NGF No-treated CMV/hTMP21 transfectants compared with vehicle transfectants, and increased in NGF treated CMV/hTMP21 transfectants. In TrkA downstream signaling pathway, the phosphorylation level of ERK was also decreased in CMV/hTMP21 transfectants, while the phosphorylation of Akt was increased in the same transfectants. Furthermore, NGF treatment induced the increase of phosphorylation level of Akt and ERK in CMV/hTMP21 transfectants. Therefore, these results suggested that over-expression of TMP21may simultaneously induce the up-regulation of $p75^{NTR}$/RhoA expression and the down-regulation of TrkA/ERK phosphorylation through the inhibition of ${\gamma}$-secretase activity.

Identification of Novel Extracts of Saccharina japonica with High Deodorant Performance and Antioxidant Activity (우수한 탈취율과 항산화능을 갖는 다시마 추출물의 규명)

  • Sung, Ji Eun;Choi, Hyeon Jun;Kim, Ji Eun;Choi, Jun Young;Park, Ji Won;Kang, Mi Ju;Bae, Su Ji;Lee, Young Hee;Park, Ju Min;Lee, Hee Seob;Kim, Dong Gyun;Kim, Young Ok;Jung, Young Jin;Hwang, Dae Youn
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.195-213
    • /
    • 2019
  • The purpose of this study was to identify novel extracts of brawn algae with the high deodorant capacity and antioxidant activity. To achieves this, an composition, deodorant performance and free radical scavenging activity were analyzed in powder and water extracts of Ecklonia cava(PEC/EEC), Saccharina japonica(PSJ/ESJ), Eisenia bicyclis(PEB/EEB), Sargassum spp.(PSS/ESS) and Hizikia fusiformis(PHF/EHF) using several analytical methods. Major component of five powders was verified as PEC, phlorotannin; PSJ, alginic acid and glutamic acid; PEB, carotenoid, chlorophyll, phlorotannin, tocopherol and fucoxantin; PSS, ${\beta}$-carotene and polyphenol; PHF, tannin. The highest level of DPPH scavenging activity was detected in EEC($IC_{50}=23.018{\mu}g/ml$), followed by EEB, ESJ, EHF and ESS. The deodorizing performance to ammonia was maintained high level in PEC, PSJ, PEB and PSS, while PHF showed low level in the same condition. But, the deodorizing performance to acetic acid was slightly higher in PSJ and PEC than those of PEB, PSS and PHF. Based on the results of DPPH scavenging activity and deodorizing capacity, we selected fractions of S. japonica as leading extracts and further prepared the 70% acetone extract (AESJ) and 70% ethanol extract (EESJ) from PSJ. The contents of total flavonoid, total phenol and total condensed tannin was significantly increased with 112-209% in AESJ and EESJ compared to those of ESJ. Also, a similar enhancement was observed on the level of DPPH scavenging activity and deodorizing performance against ammonia/acetic acid in AESJ and EESJ. Therefore, these results suggest that AESJ and EESJ contained with high total phenol and total condensed tannin contents may exhibit high deodorant capacity and antioxidant activity as well as has the potential for use as a powerful biomaterial for antibacterial deodorant.

Comparison of scopolamine-induced cognitive impairment responses in three different ICR stocks

  • Yoon, Woo Bin;Choi, Hyeon Jun;Kim, Ji Eun;Park, Ji Won;Kang, Mi Ju;Bae, Su Ji;Lee, Young Ju;Choi, You Sang;Kim, Kil Soo;Jung, Young-Suk;Cho, Joon-Yong;Hwang, Dae Youn;Song, Hyun Keun
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.317-328
    • /
    • 2018
  • Cognitive impairment responses are important research topics in the study of degenerative brain diseases as well as in understanding of human mental activities. To compare response to scopolamine (SPL)-induced cognitive impairment, we measured altered parameters for learning and memory ability, inflammatory response, oxidative stress, cholinergic dysfunction and neuronal cell damages, in Korl:ICR stock and two commercial breeder stocks (A:ICR and B:ICR) after relevant SPL exposure. In the water maze test, Korl:ICR showed no significant difference in SPL-induced learning and memory impairment compared to the two different ICRs, although escape latency was increased after SPL exposure. Although behavioral assessment using the manual avoidance test revealed reduced latency in all ICR mice after SPL treatment as compared to Vehicle, no differences were observed between the three ICR stocks. To determine cholinergic dysfunction induction by SPL exposure, activity of acetylcholinesterase (AChE) assessed in the three ICR stocks revealed no difference of acetylcholinesterase activity. Furthermore, low levels of superoxide dismutase (SOD) activity and high levels of inflammatory cytokines in SPL-treated group were maintained in all three ICR stocks, although some variations were observed between the SPL-treated groups. Neuronal cell damages induced by SPL showed similar response in all three ICR stocks, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, Nissl staining analysis and expression analyses of apoptosis-related proteins. Thus, the results of this study provide strong evidence that Korl:ICR is similar to the other two ICR. Stocks in response to learning and memory capacity.

Effect of Spray-drying Condition and Surfactant Addition on Morphological Characteristics of Spray-dried Nanocellulose

  • Park, Chan-Woo;Han, Song-Yi;Namgung, Hyun-Woo;Seo, Pureun-Narae;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • In this study, spray-drying yield and morphological characterization of spray-dried cellulose nanofibril (CNF) and TEMPO-oxidized nanocellulose (TONC) depending on spray-drying condition and surfactant addition was investigated. As spray-drying temperature increased, the yield of spray-dried CNF was increased. The highest spray-drying yields in both nanocelluloses were found at didecyl dimethyl ammonium chloride (DDAC) addition of 2.5 phr at all investigated temperatures. The spray-dried CNF was the sphere-like particle, but the spray-dried TONC showed both rod and sphere-like morphology. The average diameter of spray-dried CNF was decreased with increasing DDAC addition amount, resulting in the increase of specific surface area.

Precise ultrasonic coating and controlled release of sirolimus with biodegradable polymers for drug-eluting stent

  • Joung, Yoon Ki;Jang, Bu Nam;Kang, Jong Hee;Han, Dong Keun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.1
    • /
    • pp.13-25
    • /
    • 2014
  • In the current study, a drug-eluting stent coated with biodegradable polymers and sirolimus was developed by using an ultrasonic nanocoater and characterized in aspects of surface smoothness and coating thickness. In addition, in vitro release profiles of sirolimus by changing top coating layer with different biodegradable polymers were investigated. Smooth surfaces with variable thickness could be fabricated by optimizing polymer concentration, flow rate, nozzle-tip distance, gas pressure, various solvents and ultrasonic power. Smooth surface could be generated by using volatile solvents (acetone, chloroform, and methylene chloride) or post-treating with solvent vapor. Coating thickness could be controlled by varying injection volume or polymer concentration, and higher concentration could reduce the coating time while obtaining the same thickness. The thickness measurement was the most effectively performed by a conventional cutting method among three different methods that were investigated in this study. Release profiles of sirolimus were effectively controlled by changing polymers for top layer. PLGA made the release rate 3 times faster than PDLLA and PLLA and all top layers prevented burst release at the initial phase of profiles. Our results will provide useful and informative knowledge for developing drug-eluting stents, especially coated with biodegradable polymers.

Application of Electrospun Silk Fibroin Nanofibers as an Immobilization Support of Enzyme

  • Lee Ki Hoon;Ki Chang Seok;Baek Doo Hyun;Kang Gyung Don;Ihm Dae-Woo;Park Young Hwan
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.181-185
    • /
    • 2005
  • Silk fibroin (SF) nanofibers were prepared by electrospinning and their application as an enzyme immobilization support was attempted. By varying the concentration of SF dope solution the diameter of SF nanofiber was controlled. The SF nanofiber web had high capacity of enzyme loading, which reached to $5.6\;wt\%$. The activity of immobilized a-chymotrypsin (CT) on SF nanofiber was 8 times higher than that on silk fiber and it increased as the fiber diameter decreased. Sample SF8 (ca. 205 nm fiber diameter) has excellent stability at $25^{\circ}C$ by retaining more than $90\%$ of initial activity after 24 hours, while sample SF11 (ca. 320 nm fiber diameter) shows higher stability in ethanol, retaining more than $45\%$ of initial activity. The formation of multipoint attachment between enzyme and support might increase the stability of enzyme. From these results, it is expected that the electrospun SF nanofibers can be used as an excellent support for enzyme immobilization.