• Title/Summary/Keyword: biomass productivity

Search Result 371, Processing Time 0.023 seconds

A study on the forecasting biomass according to the changes in fishing intensity in the Korean waters of the East Sea (한국 동해 생태계의 어획강도 변화에 따른 자원량 예측 연구)

  • LIM, Jung-Hyun;SEO, Young-Il;ZHANG, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.3
    • /
    • pp.217-223
    • /
    • 2018
  • Overfishing capacity has become a global issue due to over-exploitation of fisheries resources, which result from excessive fishing intensity since the 1980s. In the case of Korea, the fishing effort has been quantified and used as an quantified index of fishing intensity. Fisheries resources of coastal fisheries in the Korean waters of the East Sea tend to decrease productivity due to deterioration in the quality of ecosystem, which result from the excessive overfishing activities according to the development of fishing gear and engine performance of vessels. In order to manage sustainable and reasonable fisheries resources, it is important to understand the fluctuation of biomass and predict the future biomass. Therefore, in this study, we forecasted biomass in the Korean waters of the East Sea for the next two decades (2017~2036) according to the changes in fishing intensity using four fishing effort scenarios; $f_{current}$, $f_{PY}$, $0.5{\times}f_{current}$ and $1.5{\times}f_{current}$. For forecasting biomass in the Korean waters of the East Sea, parameters such as exploitable carrying capacity (ECC), intrinsic rate of natural increase (r) and catchability (q) estimated by maximum entropy (ME) model was utilized and logistic function was used. In addition, coefficient of variation (CV) by the Jackknife re-sampling method was used for estimation of coefficient of variation about exploitable carrying capacity ($CV_{ECC}$). As a result, future biomass can be fluctuated below the $B_{PY}$ level when the current level of fishing effort in 2016 maintains. The results of this study are expected to be utilized as useful data to suggest direction of establishment of fisheries resources management plan for sustainable use of fisheries resources in the future.

Application of Saccharified Acorn-starch for Biomass and Lipid Accumulation of Microalgae (당화된 도토리의 전분이 미세조류 바이오매스 증식과 바이오오일 함량에 미치는 영향)

  • Choi, Hee-Jeong;Lee, Jung-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.197-204
    • /
    • 2016
  • The growth of the algae strain Chlorella vulgaris under mixotrophic conditions in the presence of saccharified acorn-starch (acorn-glucose) was evaluated with the objective of increasing biomass growth and triacylglycerols (TAGs) content. The results indicated that 81.3% of starch was converted to glucose in acorns. C.vulgaris algal strains grown with acorn-glucose produced higher biomass and TAGs content than with autotrophic growth. The highest biomass production and TAGs content with 3 g/L acorn-glucose were 12.44 g/L and 32.9%, respectively. Biomass production with 3 g/L acorn-glucose was 16.4 fold higher than under autotrophic growth condition. These findings suggested that 3 g/L acorn-glucose is economic and efficient for biomass production/productivity and TAGs content of microalgae. This study provides a feasible way to reduce the cost of bioenergy production from microalgae.

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing

  • Ko, Jae-Heung;Kim, Hyun-Tae;Han, Kyung-Hwan
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose and lignin surrounds the cellulose component of the plant's cell wall in order to protect the cell from enzymatic attacks. Such resistance, along with the variability seen in the proportions of the major components of the mixture, presents process design and operating challenges to the bioconversion of lignocellulosic biomass to fuel. Expanding bioenergy production to the commercial scale will require a significant improvement in the growth of feedstock as well as in its quality. Plant biotechnology offers an efficient means to create "targeted" changes in the chemical and physical properties of the resulting biomass through pathway-specific manipulation of metabolisms. The successful use of the genetic engineering approach largely depends on the development of two enabling tools: (1) the discovery of regulatory genes involved in key pathways that determine the quantity and quality of the biomass, and (2) utility promoters that can drive the expression of the introduced genes in a highly controlled manner spatially and/or temporally. In this review, we summarize the current understanding of the transcriptional regulatory network that controls secondary wall biosynthesis and discuss experimental approaches to developing-xylem-specific utility promoters.

Mapping Herbage Biomass on a Hill Pasture using a Digital Camera with an Unmanned Aerial Vehicle System

  • Lee, Hyowon;Lee, Hyo-Jin;Jung, Jong-Sung;Ko, Han-Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.225-231
    • /
    • 2015
  • Improving current pasture productivity by precision management requires practical tools to collect site specific pasture biomass data. Recent developments in unmanned aerial vehicle (UAV) technology provide cost effective and real time applications for site specific data collection. For the mapping of herbage biomass (BM) on a hill pasture, we tested a UAV system with digital cameras (visible and near-infrared (NIR) camera). The field measurements were conducted on the grazing hill pasture at Hanwoo Improvement Office, Seosan City, Chungcheongnam-do Province, Korea on May 17 and June 27, 2014. Plant samples were obtained from 28 sites. A UAV system was used to obtain aerial photos from a height of approximately 50 m (approximately 30 cm spatial resolution). Normalized digital number (DN) values of Red and NIR channels were extracted from the aerial photos and a normalized differential vegetation index using DN ($NDVI_{dn}$) was calculated. The results show that the correlation coefficient between BM and $NDVI_{dn}$ was 0.88. For the precision management of hilly grazing pastures, UAV monitoring systems can be a quick and cost effective tool to obtain site-specific herbage BM data.

Biomass and Nutrient Distribution in Unthinned Korean White Pine Plantation in Chuncheon, Gangwon Province (강원도 춘천지역 비시업 잣나무림의 현존량과 양분분포)

  • Han, S.K.;Yi, M.J.;Kwon, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.16 no.1
    • /
    • pp.77-91
    • /
    • 2014
  • This study was performed to provide basal data for effective nutrient control and productivity improvement of the Korean white pine stand. The objectives of this study were to investigate biomass and nutrient distribution in the unthinned Korean white pine plantation which is located in chuncheon, Gangwon province. Aboveground of the stand was estimated by the method of allometric relationship between tree component(kg) and diameter at breast height(DBH, cm). Total above ground biomass of the stand was 127.9t/ha. The relative ratio of stem, living branch, needle compared with total aboveground biomass were 57.9, 16.1, 12.7 and 13.3%, respectively. All nutrients were highly accumulated in needle and N had the largest proportion in the total amount of nutrient accumulation and followed by Ca, K, Mg, P. The amount of nutrient restoration in the Korean white pine was 6,852kg/ha for N, 1,916kg/ha for Ca, 889kg/ha for K, 518kg/ha for Mg, and 124kg/ha for P.

Biomass and Net Primary Production of Pinus densiflora Stands in Gochang regions (고창지역 소나무림의 바이오매스 및 순생산량에 관한 연구)

  • Seo, Yeon-Ok;Lee, Young-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.45-53
    • /
    • 2010
  • This study was conducted to examine the biomass and net primary production, stem density and biomass expansion factors of Pinus densiflora in Gochang regions. The mean age of Pinus densiflora in both stands was 10 and 48 years. The dry weights (kg/tree) and aboveground biomass (Mg/ha) were 8.59 and 17.55 for 10 years young stand, 166.66 and 122.05 for 48 years old stand. The total biomass (Mg/ha) including the above and belowground were 21.48 and 154.16 in both age stands. The proportion of stem biomass, stem bark biomass and root biomass increased from the young stand to the old stand while on the leaf biomass and branch biomass, tend to decreased. The net primary production of aboveground biomass (Mg/ha) and belowground biomass were 6.30~6.95 for the young stand and 11.61~13.19 for old stand. The stem density ($g/cm^3$) was 0.338 for young stand while on the other hand, 0.448 for old stand was observed. The above and total biomass expansion factors were 2.304~2.508 and 1.318~1.644 in each age stands, respectively.

A Study on the Design Criteria of Photobioreactor for the Efficiency of Light-Utilization (빛 이용효율 향상을 위한 광생물반응기 설계 기준에 관한 연구)

  • 류현진;이진석;오경근
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.257-262
    • /
    • 2004
  • Recently, there is a growing interest in microalgae and the use of microalgae focused on the production of various high value metabolite used in food, pharmaceuticals and cosmetics. The key limiting factor in high density algal cultivation is the light and algal growth is defined by light intensity and light penetration depth into the culture medium. The effect of light with various light paths, S/V ratios, light intensities, and 50% duty cycle on the growth of microalgae was examined to enhance microalgal biomass productivity and photosynthetic efficiency. We confirmed that the utilization of efficient light energy was obtained from 4 cm of diameter, 57.6% of S/V ratio, 62 ${\mu}$mol/㎡/s of light intensity.

Raceway Cultivation of Spirulina platensis Using Underground Water

  • Kim, Choong-Jae;Jung, Yun-Ho;Ko, So-Ra;Kim, Hong-Ik;Park, Yong-Ha;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.853-857
    • /
    • 2007
  • The semi-outdoor cultivation of Spirulina platens is was attempted using an underground-water-based medium. Occurrence of contaminant organisms such as Chlorella sp. and Chlamydomonas sp. was not found from a microscopic observation and bacteria were not detected from denaturing gradient gel electrophoresis(DGGE) analysis of PCR-amplified 16S rDNA during the cultivation, owing to pH control and the high quality of the underground water. The mean productivity was high at $10.5g/m^2/d$ with a range of $4.2-12.3g/m^2/d$ despite the unfavorable weather conditions of the rainy season. The cultivated S. platens is included a normal protein content of 58.9%. Consequently, the underground water improved the biomass productivity and the biomass quality because of an abundant supplementation of natural minerals and through a contaminant-free culture.

Mixotrophic Cultivation of Marine Alga Tetraselmis sp. Using Glycerol and Its Effects on the Characteristics of Produced Biodiesel

  • Dang, Nhat Minh;Kim, Garam;Lee, Kisay
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.222-228
    • /
    • 2022
  • As a possible feedstock for biodiesel, the marine green alga Tetraselmis sp. was cultivated under different conditions of phototrophic, mixotrophic and heterotrophic cultures. Glycerol, a byproduct from biodiesel production process, was used as the carbon source of mixotrophic and heterotrophic culture. The effects of glycerol supply and nitrate-repletion were compared for different trophic conditions. Mixotrophic cultivation exhibited higher biomass productivity than that of phototrophic and heterotrophic cultivation. Maximum lipid productivity of 55.5 mg L-1 d-1 was obtained in the mixotrophic culture with 5 g L-1 of glycerol and 8.8 mM of nitrate due to the enhancement of both biomass and lipid accumulation. The major fatty acid methyl esters (FAME) in the produced biodiesel were palmitic acid (C16:0), oleic acid (C18:1), linoleic acid (C18:2), and linolenic acid (C18:3). The degree of unsaturation was affected by different culture conditions. The biodiesel properties predicted by correlation equations based on the FAME profiles mostly complied with the specifications from the US, Europe and Korea, with the exception of the cold-filter plugging point (CFPP) criterion of Korea.

Seasonal Changes in the Productivity and Soil Nutrients of Phragmites communis Community in the Salt Marsh of the Sumjin-River Estuary (섬진강 하구 염습지 갈대군락의 생산성과 토양양분의 계절적 변화)

  • Oh, Kyung-Hwan;Ihm, Byung-Suh
    • The Korean Journal of Ecology
    • /
    • v.6 no.2
    • /
    • pp.90-97
    • /
    • 1983
  • Seasonal changes of the soil nutrient contents and aboveground biomass, relationship between the soil nutrients and the productivity, and the net efficiencies of solar energy conversion were studied in two reeed communities (Phragmites communis Trin.) at the salt marsh in the estuary of the Sumjin-River from April 30 to October 9, 1981. The inorganic nutrients such as exchangeable sodium and potassium of soil were decreased during growing season. The amounts of organic matter, exchangeable sodium and potassium, total nitrogen, and available phosphorus in stand $\prod$ were much more than those of stand $\coprod$ . Productivity of Phragmites communis was positively correlated with the soil nutrients such as available phosphorus, exchangeable potassium and total nitrogen. The maximum dry matter productions of the aboveground parts in stand $\prod$ stand $\coprod$ were $ 1, 120g/m^2; and; 843g/m^2$ in August, and the net coversion efficiencies of PhAR based on growing season (April to September) were 1.77% and 1.33%, respectively.

  • PDF