• Title/Summary/Keyword: biological waste

Search Result 517, Processing Time 0.026 seconds

Effect of Waste Nutrient Solution and Reclaimed Wastewater on Chinese Cabbage Growth and Soil Properties (폐양액과 하수처리수 재이용이 배추생육 및 토양에 미치는 영향)

  • Choi, Bong-Su;Lim, Jung-Eun;Shin, Yong-Keon;Yang, Jae-E.;Lee, Sang-Soo;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.394-399
    • /
    • 2011
  • This study evaluated the effect of using waste nutrient solution (WNS) and reclaimed wastewater (WW) on the growth of Chinese cabbage and soil quality. The pH and electrical conductivity (EC) values of waste nutrient solution were 6.3 and $1.5dS\;m^{-1}$ and being 6.8 and $0.4dS\;m^{-1}$ in reclaimed WW, respectively. WNS found to be included more than $10g\;m^{-2}$ of $NO_3^-$, $K^+$, $SO_4^{2-}$ and $Ca^{2+}$, thereby enhancing Chinese cabbage growth. However, $Cl^-$ and $Na^+$ contents were higher than other nutrients in WW. Among the three irrigation resources, no significant differences were found for the growth of Chinese cabbage plants. On the other hand, pH was decreased in WNS-treated soil when compare to that in WW-treated soil which pH was increased. In spite of the uptake of nutrients by the growing plants, irrigation of the WNS led to an increase in available $P_2O_5$ and exchangeable cations such as $K^+$ and $Mg^{2+}$ in the soil when compared to soil that irrigated by groundwater or WW. Taken together, the use of WNS can remarkably reduce the amount of the chemical fertilizer for Chinese cabbage production; however, WNS can possibly cause a problem as nutrients accumulation in soil.

Application of Adsorption Characteristic of Ferrous Iron Waste to Phosphate Removal from Municipal Wastewater (폐산화철의 흡착특성을 이용한 도시하수내 인 처리)

  • Kim, Jin-Hyung;Lim, Chae-Sung;Kim, Keum-Yong;Kim, Dae-Keun;Lee, Sang-Ill;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • This study proposed the method of phosphate recovery from municipal wastewater by using ferrous iron waste, generated from the mechanical process in the steel industry. In the analysis of XRD, ferrous iron waste was composed of $Fe_3O_4$ (magnetite), practically with $Fe^{2+}$ and $Fe^{3+}$. It had inverse spinel structure. In order to identify the adsorption characteristic of phosphate on ferrous iron waste, isotherm adsorption test was designed. Experimental results were well analyzed by Freundlich and Langmuir isotherm theories. Empirical constants of all isotherms applied increased with alkalinity in the samples, ranging from 1.2 to 235 $CaCO_3/L$. In the regeneration test, empirical constants of Langmuir isotherm, i.e., $q_{max}$ (maximum adsorption capacity) and b (energy of adsorption) decreased as the frequency of regeneration was increased. Experiment was further performed to evaluate the performance of the treatment scheme of chemical precipitation by ferrous iron waste followed by biological aerated filter (BAF). The overall removal efficiency in the system increased up to 80% and 90% for total phosphate (TP) and soluble phosphate (SP), respectively, and the corresponding effluent concentrations were detected below 2 mg/L and 1 mg/L for TP and SP, respectively. However, short-circuit problem was still unsolved operational consideration in this system. The practical concept applied in this study will give potential benefits in achieving environmentally sound wastewater treatment as well as environmentally compatible waste disposal in terms of closed substance cycle waste management.

Mycelial Growth and Fruiting Body Formation of Hericium erinaceum in Sawdust and Agricultural By-product Substrates (톱밥 및 농업부산물 이용 배지상에서 노루궁뎅이버섯(Hericium erinaceum)의 균사생장 및 자실체형성)

  • Ko, Han-Gyu;Park, Hyuk-Gu;Kim, Seong-Hwan;Park, Won-Mok
    • The Korean Journal of Mycology
    • /
    • v.32 no.2
    • /
    • pp.89-94
    • /
    • 2004
  • This study was carried out to investigate the suitability of various agricultural by-products as basal substrates for the mycelial growth and fruiting body formation of Hericium erinaceum. For this aim, oak sawdust, cotton waste, sugarcane bagasse, Job's tears, rice hull, Chinese cabbage, and coconut waste were used as sole or mixed substrate(s). Corn waste and rice bran were used as nutrient supplements. The growth and density of mycelium, yield of fruiting body, and biological efficiency were compared among tested substrates colonized by Hericium erinaceum. The best measurement of mycelial growth and density, yield of fruiting body, and biological efficiency in a laboratory test was found in a spawn substrate composed with oak sawdust 80% and rice bran 20%. The suitability of this spawn substrate composition for Hericium fruiting body production was testified through practical tests in plastic bottles (850 ml) in a mushroom farm which had bottle cultivation facility. However, test in a mushroom farm which had plastic bag cultivation facility, best production of Hericium fruiting body (520 g per one bag) was observed in a spawn substrate composed of cotton waste 40%, saw dust 40%, corn waste 10%, and rice bran 10%.

Studies on the Biological Treatment of Waste Water from Acetaldehyde Plant (아세트 알데히드(특수산업) 폐수의 생물학적 처리)

  • 정기택;서승교;송형익;박임동;방광웅
    • Korean Journal of Microbiology
    • /
    • v.25 no.4
    • /
    • pp.333-338
    • /
    • 1987
  • In order to establish the biological treatment system which can be used for treatment of waste aster from acetaldehyde plant, it was investigated optimum nutrient requirements and growth conditions by mixed culture of Micrococcus roseus AW-6, Micrococcus luteus AW-22, Microbacterium lacticum AW-38 and Microbacterium laevaniformans AW-41 as well as the effect of coagulants and neutralization reagents. Also, it was carried out the continuous culture as well as batch culture to treat the waste water by mixed culture of these strains. The COD removal rate was reached to maximum state for 96hrs culture at pH7.0 and $30^{\circ}C$ NaOH as the neutralization reagents was the most effective, but the coagulants had no effect on the COD remonal rate and the optimum dilution times for treatment were 10 fold. The COD removal rate was also increased by supplimenting 200 ppm $NH_{2}NO_{3}$, 50 ppm $KH_{2}PO_{4}$, 15 ppm $CaCl_{2}$ and 1 ppm $MgSO_{4} \cdot 7H_{2}O $ as additional nutrients. The removal rate coefficient $K_{1}$ on the batch culture was $4.5\times 10^{-6}$, and the detention time for BOD removal rate of 85% was approximately 45hrs. The COD of waste water was reduced to 15% of its initial value by the continuous culture. The COD and BOD of the effluents were to be about 60 ppm and 40 ppm, respectively, and final pH was 7.0.

  • PDF

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry (반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Gyu-Sik Park;Jisu Lim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.

A Study on Optimum Conditions Derivation on Thermal Hydrolysis of Food Wastewater and the Applicability of the Thermal Solubilization in Biological Denitrification Process (음폐수의 열가수분해 최적조건 도출과 생물학적 탈질공정에서 열가용화액의 적용 가능성에 관한 연구)

  • Lee, Ki Hee;You, Hee Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • The aim of this research is to derive an optimum operating condition for the thermal solubilization equipment that is employed to increase concentration of soluble organic materials and to assess whether it would be possible to use the waste sludge generated by thermal solubilization reaction as an external carbon source in biological denitrification process. For the purpose, we have constituted a laboratory-size thermal solubilization equipment and have assessed thermal hydrolysis efficiency based on various reaction temperature and reaction time. We have also derived SDNR using the waste sludge generated by thermal solubilization reaction through a batch experiment. As a result of research, the highest thermal hydrolysis efficiency of about 42.8% was achieved at $190^{\circ}C$ of reaction temperature and at 90 minutes of reaction time. And when SDNR was derived using the waste sludge, the value obtained was $0.080{\sim}0.094\;g\;NO_3{^-}-N/g\;MLVSS{\cdot}day$, showing SDNR that is higher than that obtained by the results of existing researches that used common wastewater as an external carbon source. Accordingly, in view of the fact that food wastes vary quite a bit in characteristics based on the area they are generated from and seasonal change, it seems that a flexible operation of thermal solubilization equipment is required through on-going monitoring of food wastes that are imported to food wastes recycling facilities.

Inhibition of Verticillium Wilt in Cotton through the Application of Pseudomonas aeruginosa ZL6 Derived from Fermentation Residue of Kitchen Waste

  • Qiuhong Niu;Shengwei Lei;Guo Zhang;Guohan Wu;Zhuo Tian;Keyan Chen;Lin Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1040-1050
    • /
    • 2024
  • To isolate and analyze bacteria with Verticillium wilt-resistant properties from the fermentation residue of kitchen wastes, as well as explore their potential for new applications of the residue. A total of six bacterial strains exhibiting Verticillium wilt-resistant capabilities were isolated from the biogas residue of kitchen waste fermentation. Using a polyphasic approach, strain ZL6, which displayed the highest antagonistic activity against cotton Verticillium wilt, was identified as belonging to the Pseudomonas aeruginosa. Bioassay results demonstrated that this strain possessed robust antagonistic abilities, effectively inhibiting V. dahliae spore germination and mycelial growth. Furthermore, P. aeruginosa ZL6 exhibited high temperature resistance (42℃), nitrogen fixation, and phosphorus removal activities. Pot experiments revealed that P. aeruginosa ZL6 fermentation broth treatment achieved a 47.72% biological control effect compared to the control group. Through activity tracking and protein mass spectrometry identification, a neutral metalloproteinase (Nml) was hypothesized as the main virulence factor. The mutant strain ZL6ߡNml exhibited a significant reduction in its ability to inhibit cotton Verticillium wilt compared to the strain P. aeruginosa ZL6. While the inhibitory activities could be partially restored by a complementation of nml gene in the mutant strain ZL6CMߡNml. This research provides a theoretical foundation for the future development and application of biogas residue as biocontrol agents against Verticillium wilt and as biological preservatives for agricultural products. Additionally, this study presents a novel approach for mitigating the substantial amount of biogas residue generated from kitchen waste fermentation.

A Study of Dominant Microorganisms in Waste Handling Industries (폐기물 취급 업종에서 우점하는 미생물에 대한 평가)

  • Park, Hae Dong;Park, Hyunhee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.84-94
    • /
    • 2013
  • Objectives: The objective of this study is to identify the composition of dominant microorganisms in waste handling industries. Methods: We collected airborne bacteria and fungi by agar plate impaction method in recyclable waste sorting industry, food recycling industry, landfill and incineration. Isolated dominant microorganisms were identified by VITEK system or morphological analysis. Results: We isolated totally 330 microorganisms in the process and outdoor. Bacillus was the most dominant genus in the all industries, and Sphingomonas, Acinetobacter, Staphylococcus, and Proteus was dominant bacterial genus. The dominant genus of fungi was Penicillium, Aspergillus, and Cladosporium in each industries. Enterobacter, Pseudomonas, Klebsiella, and Proteus was identified as the dominant gram negative bacteria. The ratio of bacteria being biosafety levels(class 1 or 2) was 58.3~77.8%. Conclusions: This study has investigated the dominant microorganisms in the waste handling industries. The genus of dominant microorganisms was similar among the industries but the composition was different. We used biosafety levels as qualitative method, but further studies are needed about specific process of qualitative evaluation methods.

Biodrying of municipal solid waste under different ventilation periods

  • Ab Jalil, N.A.;Basri, H.;Basri, N.E. Ahmad;Abushammala, Mohammed F.M.
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.145-151
    • /
    • 2016
  • Biodrying is a pre-treatment method that applies biological and mechanical concepts to drying solid waste. In Malaysia, municipal solid waste (MSW) is unseparated and contains a high level of moisture, making the use of technology such as solid waste burning unsuitable and harmful. MSW containing organic material can be processed naturally until the moisture content of the waste is reduced. This study on MSW biodrying was carried out on a laboratory scale to measure the percent moisture content reduction and to monitor temperature patterns under different ventilation periods. This work was conducted using five biodrying reactors volumes of 50 liters each. Reactors were ventilated for 5, 10, 15, 20 and 30 min every 3 h, with a 3 bar air supply. The duration of this process was 14 days for all samples. The results showed that the optimum ventilation time was 10 min, with an 81.84% reduction in moisture content, and that it required almost half of the electricity cost required for the 20 and 30 min ventilations.