• Title/Summary/Keyword: biological value

Search Result 2,175, Processing Time 0.032 seconds

Effects of sodium diacetate and microbial inoculants on fermentation of forage rye

  • Yan Fen Li;Eun Chan Jeong;Li Li Wang;Hak Jin Kim;Farhad Ahmadi;Jong Geun Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.96-112
    • /
    • 2023
  • Rye (Secale cereale L.) is a valuable annual forage crop in Korea but there is limited information about the impact of chemical and biological additives on fermentation characteristics of the crop. This experiment was conducted to investigate fermentation dynamics of wilted forage rye treated with the following six additives; control (no additive), sodium diacetate applied at 3 g/kg wilted forage weight (SDA3), 6 g/kg wilted forage weight (SDA6), inoculations (106 CFU/g wilted forage) of Lactobacillus plantarum (LP), L. buchneri (LB), or LP+LB. The ensiled rye sampled at 1, 2, 3, 5, 10, 20, 30, and 45 days indicated that the acidification occurred fast within five days of storage than the rest of the storage period. The microbial inoculants decline the pH of ensiled forage, more rapidly than the control or SDA treated, which accompanied by the decrease of water-soluble carbohydrates and increase of lactic acid. Compared with the control silage, all treatments suppressed ammonia-nitrogen formation below to 35 g/kg DM throughout the sampling period. Suppression of total microbial counting occurred in SDA6, LP, and LP + LB. The lactic acid production rates were generally higher in microbial inoculation treatments. Acetic acid concentration was lowest in the LP-treated silage and highest in the SDA- and LB-treated silages. The in vitro dry matter (DM) digestibility and total digestible nutrients were the highest in the silage treated with SDA (6 g/kg) at day 45 of ensiling. Based on lower ammonia-nitrogen concentrations and higher feed value, ensiling forage rye treated with SDA at 6 g/kg is promising through enhanced silage quality.

C4orf47 is a Novel Prognostic Biomarker and Correlates with Infiltrating Immune Cells in Hepatocellular Carcinoma

  • Hye-Ran Kim;Choong Won Seo;Sang Jun Han;Jongwan Kim
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.11-25
    • /
    • 2023
  • In hepatocellular carcinoma (HCC), chromosome 4 open-reading frame 47 (C4orf47) has not been so far investigated for its prognostic value or association with infiltrating immune cells. We performed bioinformatics analysis on HCC data and analyzed the data using online databases such as TIMER, UALCAN, Kaplan-Meier plotter, LinkedOmics, and GEPIA2. We found that C4orf47 expression in HCC was higher compared to normal tissues. High C4orf47 expression was associated with a worse prognosis in HCC. The correlation between C4orf47 and infiltrating immune cells is positively associated with CD4+T cells, B cells, neutrophils, macrophages, and dendritic cells in HCC. Moreover, high C4orf47 expression was correlated with a poor prognosis of infiltrating immune cells. Analysis of C4orf47 gene co-expression networks revealed that 12501 genes were positively correlated with C4orf47, whereas 7200 genes were negatively correlated. The positively related genes of C4orf47 are associated with a high hazard ratio in different types of cancer, including HCC. Regarding the biological functions of C4orf47 gene, it mainly regulates RNA metabolic process, DNA replication, and cell cycle. The C4orf47 gene may play a prognostic role by regulating the global transcriptome process in HCC. Our findings demonstrate that high C4orf47 expression correlates with poor prognosis and tumor-infiltrating immune cells in HCC. We suggest that C4orf47 is a novel prognostic biomarker and potential immune therapeutic target for HCC.

Development of Complex Module Device for Odor Reduction in Sewage

  • KIM, Young-Do;JEONG, Tae-Hwan;Kim, Su-Hye;KWON, Woo-Taeg
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.5 no.4
    • /
    • pp.51-56
    • /
    • 2022
  • Purpose: By applying an ultrasonic mechanical device to the liquid fertilizer storage in the pig dropping treatment plant, the initial odor of the odor source is reduced, and the air dilution drainage of the complex odor is fundamentally recognized to facilitate odor treatment on the mechanical and chemical biological treatment devices at the rear. Research design, data and methodology: The odor concentration on the site boundary was measured to confirm the state of reduction. In order to prevent the spread of odor from the collection of the pig dropping treatment plant, it was measured by installing an ultrasonic generator inside the installation wall after installing the sealing wall. Results: The average value of the March and April measurement data remained close to neutral at 8.2 after 8.6 treatment before pH treatment, decreased 97.3% from 462 mg/L before SS treatment to 10.5 mg/L after treatment, and the composite odor was reduced by 85% from 20 to 3 before treatment. It was confirmed that ammonia (NH3) was reduced by 99% from 5.8 ppm to 0.09 ppm, and general bacteria were also reduced by 99% from 3,200 CFU/mL to 57 CFU/mL Conclusion: Applying the ultrasonic air ejector hybrid system and zigzag air complex module development product to resource circulation centers or sewage treatment facilities is thought to reduce inconvenience to residents due to odors caused.

Prognostic biomarkers and molecular pathways mediating Helicobacter pylori-induced gastric cancer: a network-biology approach

  • Farideh Kamarehei;Massoud Saidijam;Amir Taherkhani
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.8.1-8.19
    • /
    • 2023
  • Cancer of the stomach is the second most frequent cancer-related death worldwide. The survival rate of patients with gastric cancer (GC) remains fragile. There is a requirement to discover biomarkers for prognosis approaches. Helicobacter pylori in the stomach is closely associated with the progression of GC. We identified the genes associated with poor/favorable prognosis in H. pylori-induced GC. Multivariate statistical analysis was applied on the Gene Expression Omnibus (GEO) dataset GSE54397 to identify differentially expressed miRNAs (DEMs) in gastric tissues with H. pylori-induced cancer compared with the H. pylori-positive with non-cancerous tissue. A protein interaction map (PIM) was built and subjected to DEMs targets. The enriched pathways and biological processes within the PIM were identified based on substantial clusters. Thereafter, the most critical genes in the PIM were illustrated, and their prognostic impact in GC was investigated. Considering p-value less than 0.01 and |Log2 fold change| as >1, five microRNAs demonstrated significant changes among the two groups. Gene functional analysis revealed that the ubiquitination system, neddylation pathway, and ciliary process are primarily involved in H. pylori-induced GC. Survival analysis illustrated that the overexpression of DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, and TXNIP was associated with poor prognosis, while increased MRPS5 expression was related to a favorable prognosis in GC patients. DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, TXNIP, and MRPS5 may be considered prognostic biomarkers for H. pylori-induced GC. However, experimental validation is necessary in the future.

Mg/Al Impregnated Biochar for the Removal and Recovery of Phosphates and Nitrate

  • Kim, Dong-Jin
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2019.10a
    • /
    • pp.134-134
    • /
    • 2019
  • Utilization of organic waste as a renewable energy source is promising for sustainability and mitigation of climate change. Pyrolysis converts organic waste to gas, oil, and biochar by incomplete biomass combustion. Biochar is widely used as a soil conditioner and adsorbent. Biochar adsorbs/desorbs metals and ions depending on the soil environment and condition to act as a nutrient buffer in soils. Biochar is also regarded as a carbon storage by fixation of organic carbon. Phosphorus (P) and nitrogen (N) are strictly controlled in many wastewater treatment plants because it causes eutrophication in water bodies. P and N is removed by biological and chemical methods in wastewater treatment plants and transferred to sludge for disposal. On the other hand, P is an irreplaceable essential element for all living organisms and its resource (phosphate rock) is estimated about 100 years of economical mining. Therefore, P and N recovery from waste and wastewater is a critical issue for sustainable human society. For the purpose, intensive researches have been carried out to remove and recover P and N from waste and wastewater. Previous studies have shown that biochars can adsorb and desorbed phosphates implying that biochars could be a complementary fertilizer. However, most of the conventional biochar have limited capacity to adsorb phosphates and nitrate. Recent studies have focused on biochar impregnated with metal salts to improve phosphates and nitrate adsorption by synthesizing biochars with novel structures and surface properties. Metal salts and metal oxides have been used for the surface modification of biochars. If P removal is the only concern, P adsorption kinetics and capacity are the only important factors. If both of P and N removal and the application of recovery are concerned, however, P and N desorption characteristics and bioavailability are also critical factors to be considered. Most of the researches on impregnated biochars have focused on P removal efficiency and kinetics. In this study, coffee waste is thermally treated to produce biochar and it was impregnated with Mg/Al to enhance phosphates and nitrate adsorption/desorption and P bioavailability to increase its value as a fertilizer. Kinetics of phosphates and nitrate adsorption/desorption and bioavailability analysis were carried out to estimate its potential as a P and N removal adsorbent in wasewater and a fertilizer in soil.

  • PDF

Measurement of Proton Beam Dose-Averaged Linear Energy Transfer Using a Radiochromic Film

  • Seohyeon An;Sang-il Pak;Seonghoon Jeong;Soonki Min;Tae Jeong Kim;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.80-87
    • /
    • 2022
  • Purpose: Proton therapy has different relative biological effectiveness (RBE) compared with X-ray treatment, which is the standard in radiation therapy, and the fixed RBE value of 1.1 is widely used. However, RBE depends on a charged particle's linear energy transfer (LET); therefore, measuring LET is important. We have developed a LET measurement method using the inefficiency characteristic of an EBT3 film on a proton beam's Bragg peak (BP) region. Methods: A Gafchromic EBT3 film was used to measure the proton beam LET. It measured the dose at a 10-cm pristine BP proton beam in water to determine the quenching factor of the EBT3 film as a reference beam condition. Monte Carlo (MC) calculations of dose-averaged LET (LETd) were used to determine the quenching factor and validation. The dose-averaged LETs at the 12-, 16-, and 20-cm pristine BP proton beam in water were calculated with the quenching factor. Results: Using the passive scattering proton beam nozzle of the National Cancer Center in Korea, the LETd was measured for each beam range. The quenching factor was determined to be 26.15 with 0.3% uncertainty under the reference beam condition. The dose-averaged LETs were measured for each test beam condition. Conclusions: We developed a method for measuring the proton beam LET using an EBT3 film. This study showed that the magnitude of the quenching effect can be estimated using only one beam range, and the quenching factor determined under the reference condition can be applied to any therapeutic proton beam range.

The Change of Arabinoxylan, Phytic Acid and Vitamin E Contents Whole Wheat Flour depends on the Millig Rate Milling Rate in the Korean Wheat Cultivar 'Saekuemkang'

  • Go Eun Lee;Kyeong-Hoon Kim;Jinhee Park;Kyeong-Min Kim;Chang-Hyun Choi;Mina Kim ;Myoung Hui Lee;Chon-Sik Kang;Jiyoung Shon;Jong-Min Ko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.299-299
    • /
    • 2022
  • Whole wheat is rich in dietary fiber and contains various biological activity substances such as arabinoxylan, phytic acid and phenolic compounds. However, excessive fiber contents of whole wheat has a negative effect on dough formation, making it difficult to process. In this study, we tried to improve the usability of whole wheat by suggesting an appropriate degree of purification of whole wheat from 'Saekeumkang', a domestic wheat cultivar containing protein and gluten suitable for noodle production. The contents of arabinoxylan, phytic acid, and vitamin E were measured in the polishing rate range of 5-20% of whole wheat flour. As the milling ratio increased, the flour properties improved. The arabinoxylan and phytic acid content of whole wheat were 67.95 mg/g and 0.87 mg/g, but when milled at 20%, arabinoxylan and phytic acid were 60% and 80% of whole wheat, respectively. And as the milling ratio increased, the vitamin E content tended to decrease (whole wheat: 4.063 mg/100 g, 20% milled: 2.96 mg/100 g), However, the vitamin E composition ratio did not change. On the other hand, α-tocopherol showed the greatest than other vitamin E isomers. Therefore, further studies needed to optimize milling rate to improve the final product while maintaining the approximate nutritional and functional value of the whole wheat.

  • PDF

Statistical Optimization of Biosurfactant Production from Aspergillus niger SA1 Fermentation Process and Mathematical Modeling

  • Mansour A. Al-hazmi;Tarek A. A. Moussa;Nuha M. Alhazmi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1238-1249
    • /
    • 2023
  • In this study, we sought to investigate the production and optimization of biosurfactants by soil fungi isolated from petroleum oil-contaminated soil in Saudi Arabia. Forty-four fungal isolates were isolated from ten petroleum oil-contaminated soil samples. All isolates were identified using the internal transcribed spacer (ITS) region, and biosurfactant screening showed that thirty-nine of the isolates were positive. Aspergillus niger SA1 was the highest biosurfactant producer, demonstrating surface tension, drop collapsing, oil displacement, and an emulsification index (E24) of 35.8 mN/m, 0.55 cm, 6.7 cm, and 70%, respectively. This isolate was therefore selected for biosurfactant optimization using the Fit Group model. The biosurfactant yield was increased 1.22 times higher than in the nonoptimized medium (8.02 g/l) under conditions of pH 6, temperature 35℃, waste frying oil (5.5 g), agitation rate of 200 rpm, and an incubation period of 7 days. Model significance and fitness analysis had an RMSE score of 0.852 and a p-value of 0.0016. The biosurfactant activities were surface tension (35.8 mN/m), drop collapsing (0.7 cm), oil displacement (4.5 cm), and E24 (65.0%). The time course of biosurfactant production was a growth-associated phase. The main outputs of the mathematical model for biomass yield were Yx/s (1.18), and µmax (0.0306) for biosurfactant yield was Yp/s (1.87) and Yp/x (2.51); for waste frying oil consumption the So was 55 g/l, and Ke was 2.56. To verify the model's accuracy, percentage errors between biomass and biosurfactant yields were determined by experimental work and calculated using model equations. The average error of biomass yield was 2.68%, and the average error percentage of biosurfactant yield was 3.39%.

Development and Optimization of Culture Medium for the Production of Glabridin by Aspergillus eucalypticola: An Endophytic Fungus Isolated from Glycyrrhiza glabra L. (Fabaceae)

  • Parisa Bahadori Ganjabadi;Mohsen Farzaneh ;Mohammad Hossein Mirjalili
    • Mycobiology
    • /
    • v.51 no.4
    • /
    • pp.230-238
    • /
    • 2023
  • Glabridin is a well-known active isoflavone found in the root of licorice (Glycyrrhiza glabra L.) that possess a wide range of biological activity. Plant cells, hairy roots, and fungal endophytes cultures are the most important alternative methods for plant resources conservation and sustainable production of natural compounds, which has received much attention in recent decades. In the present study, an efficient culture condition was optimized for the biomass accumulation and glabridin production from fungal endophyte Aspergillus eucalypticola SBU-11AE isolated from licorice root. Type of culture medium, range of pH, and licorice root extract (as an elicitor) were tested. The results showed that the highest and lowest biomass production was observed on PCB medium (6.43 ± 0.32 g/l) and peptone malt (5.85 + 0.11 g/l), respectively. The medium culture PCB was produced the highest level of glabridin (7.26 ± 0.44 mg/l), while the lowest level (4.47 ± 0.02 mg/l) was obtained from the medium peptone malt. The highest biomass (8.51 ± 0.43 g/l) and glabridin (8.30 ± 0.51 mg/l) production were observed from the PCB medium adjusted with pH = 6, while the lowest value of both traits was obtained from the same medium with pH = 7. The highest production of total glabridin (10.85 ± 0.84 mg/l) was also obtained from the culture medium treated with 100 mg/l of the plant root extract. This information can be interestingly used for the commercialization of glabridin production for further industrial applications.

Radioactivity of biological samples of patients treated with 90Y-DOTATOC

  • Marija Z. Jeremic;Milovan D. Matovic;Nenad R. Mijatovic;Suzana B. Pantovic;Dragana Z. Krstic;Tatjana B. Miladinovic;Dragoslav R. Nikezic
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3815-3821
    • /
    • 2023
  • Dosimetric studies in Nuclear Medicine are very important, especially with new therapeutic methods, the number of which has increased significantly with the Theranostic approach (determining diagnostic-therapeutic pairs where similar molecules are labelled with different isotopes in order to diagnose and treat malignant diseases). Peptide receptor radionuclide therapy (PRRT) has been used successfully for many years to treat neuroendocrine tumors (NET). 90Y-DOTATOC is one of the radiopharmaceuticals used frequently in this type of therapy. In this work, blood and urine samples from 13 patients treated with 90Y-DOTATOC were measured by a liquid scintillation beta counter (LSC). Calibration of the beta counter for this type of measurement was done and all results are presented in the paper. The presented paper also provides a methodology for determining the measurement uncertainty for this type of measurement. Immediately after the administration of radiopharmaceuticals, the activity in the blood was different from 6.31% to 88.9% of the applied radioactivity, while 3 h after the termination of the application, the average value of radiopharmaceuticals in the blood was only 3.84%. The activity in the excreted urine depended on the time when the patients urinated after the therapy. It was measured that as much as 58% of the applied radioactivity was excreted in the first urine after the therapy in a patient who urinated 4.5 h after the completed application of the therapy. In most patients, the highest urine activity was in the first 10 h after the application, while the activities after that time were negligibly low. The described methodology of measuring and evaluating activity in blood and excreted urine can be applied to other radiopharmaceuticals used in nuclear medicine. It could be useful for researchers for dosimetric assessments in clinical application of PRRT.