• Title/Summary/Keyword: biological reactor

Search Result 503, Processing Time 0.026 seconds

Characteristics of Packed-bed Plasma Reactor with Dielectric Barrier Discharge for Treating (에틸렌 처리를 위한 충진층 유전체배리어방전 플라즈마 반응기의 특성)

  • Sudhakaran, M.S.P.;Jo, Jin Oh;Trinh, Quang Hung;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.495-504
    • /
    • 2015
  • This work investigated the characteristics of a packed-bed plasma reactor system and the performances of the plasma reactors connected in series or in parallel for the decomposition of ethylene. Before the discharge ignition, the effective capacitance of the ${\gamma}$-alumina packed-bed plasma reactor was larger than that of the reactor without any packing, but after the ignition the effective capacitance was similar to each other, regardless of the packing. The energy of electrons created by plasma depends mainly on the electric field intensity, and was not significantly affected by the gas composition in the range of 0~20% (v/v) oxygen (nitrogen : 80~100% (v/v)). Among the various reactive species generated by plasma, ground-state atomic oxygen and ozone are understood to be primarily involved in oxidation reactions, and as the electric field intensity increases, the amount of ground-state atomic oxygen relatively decreases while that of nitrogen atom increases. Even though there are many parameters affecting the performance of the plasma reactor such as a voltage, discharge power, gas flow rate and residence time, all parameters can be integrated into a single parameter, namely, specific input energy (SIE). It was experimentally confirmed that the performances of the plasma reactors connected in series or in parallel could be treated as a function of SIE alone, which simplifies the scale-up design procedure. Besides, the ethylene decomposition results can be predicted by the calculation using the rate constant expressed as a function of SIE.

Biological Treatment of Textile Wastewater by Anaerobic-Aerobic Reactor System (Pilot 혐기-호기 공정을 이용한 염색폐수의 생물학적 처리)

  • 박영식;안갑환
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.11-20
    • /
    • 2001
  • An anaerobic sludge-aerobic fixed-bed biofilm(packed with ceramic support carrier of 1 inch size) reactor system was built up to treat textile wastewater. The efficiency of reactor system was examined by determining the effects of textile wastewater ratio(from 25% to 100% at HRT 24 h). The influent range of SCOD concentration and color were 1,036~1,357 mg/L, and 1,487~1,853 degree, respectively. When textile wastewater ratio was 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% 100% and hydraulic retention time was 24 hours, SCOD removal efficiency by the anaerobic stage were 39.2% and the removal efficiency of the whole system were 75.8%. Color removal efficiency by the anaerobic stage were 45.4%(soluble color), and the removal efficiency of the whole system were 70.2%. In the A/A reactor system, the aerobic stage played an important role in removing both color and COD as well as anaerobic stage.

  • PDF

Investigation of Operating Parameters on UCT Process for the Purpose of Nitrogen Removal Using Computer Simulation (하수의 질소제거시 컴퓨터 시뮬레이션을 이용한 UCT(University of Cape Town) 공정의 운영인자 검토)

  • 김병군;서인석;이해군;김창원
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.66-75
    • /
    • 1998
  • The computer simulation model was used to forecast the concentrations of COD$_{cr}$, NH$_{4}$$^{+}$-N and NO$_{3}$$^{-}$-N in each reactors. In the biological wastewater treatment system, the computer simulation model was used to observe the behavior of pollutants especially. In this research, effect of SRT, feeding pattern and recirculation rate on UCT(University of Cape Town) process was evaluated by computer simulation model. T-N removal was affected to the SRT. SRT for effective T-N removal was 15 days or longer. Feeding pattern in UCT process was affected to the T-N removal. Feeding pattern which 100% loading to the first reactor was most effective for T-N removal. The effect of recirculation rate was clear for T-N removal. The recirculation from anoxic reactor to anaerobic reactor was not need but the recirculation from oxic reactor to anoxic reactor was need. In aspect of nitrogen removal efficiency, A/O process was higher than UCT process.

  • PDF

Nutrients removal on Oxic/Anoxic time ratio in 2-stage-intermittent-aeration reactor (2단 간헐 포기조의 포기/비포기 시간비에 따른 영양염류 제거특성)

  • Kim, Hong Tae;Sin, Seok U;O, Sang Hwa;Gwon, Seong Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.675-680
    • /
    • 2004
  • This study was conducted to remove organics and nutrients using 2 stage intermittent aeration reactor. First reactor, using suspended microbial growth in intermittent aeration instead of anaerobic reactor in the typical BNR process, used minimum carbon source to release P, and it was possible to reduce ammonia loading going to second reactor. In the second reactor, using moving media intermittent aeration, it was effective to reduce nitrate in non-aeration time by attached microorganisms having long retention time. In aeration time, nitrification and P uptake were taken place simultaneously. From the experiment, two major results were as follows. First, the removal of organics was more than 90%, and optimum aeration/non-aeration time ratio for organic removal was corresponded with aeration/non-aeration time ratio for nitrogen removal. Second, in the first reactor, optimum aeration/non-aeration time ratio was 15/75 (min.) because it was necessary to maintain 75 min. of non-aeration time to suppress of impediment of return nitrate and to lead release of phosphate. In the second reactor, optimum aeration/non-aeration time ratio was 45/90 (min.).

Effects of Solids Content and Mixing Speed in Treatment of Petroleum Hydrocarbon Contaminated Soils using a Bioreactor (고형물함량 및 혼합강도가 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 미치는 영향)

  • 김수철;남궁완;박대원
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.23-30
    • /
    • 1997
  • The purpose of this study was to evaluate effects of solids content and mixing speed in treatment of petroleum hydrocarbon contaminated soils using a slurry-phase bioreactor. Performance results on slurry-phase bioremediation of diesel fuel contaminated soil were generated at the bench-scale level. The fate of TPH(Total Petroleum Hydrocarbon) was evaluated in combination with biological treatment. Abiotic and biotic fate of the TPH were determined using soil not previously exposed to compounds in diesel fuel. The reactor volume for given throughput can be reduced by maximizing the solids content. Applications of 50% and 20% solids content(dry weight basis) were showed a little difference(57.5% : 61.6%) in biological TPH removal rate each other. Mixing and particle suspension are critical to desorption and biological degradation. In this standpoint, this study was performed using two mixing speed. When the reactor was operated at 70rpm, it had a better result in the particle suspension and TPH removal rate than the reactor with mixer rotated at 20rpm. In the reactor applied 20rpm, it was resulted in failure of particle suspension.

  • PDF

Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기 반응채널구조에 따른 열적 효과 분석)

  • Lee, Yongkyu;Jung, Ikhwan;Na, Jonggeol;Park, Seongho;Kshetrimayum, Krishnadash S.;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.818-823
    • /
    • 2015
  • In this study, FT reaction in a microchannel was simulated using computational fluid dynamics(CFD), and sensitivity analyses conducted to see effects of channel geometry variables, namely, process channel width, height, gap between process channel and cooling channel, and gap between process channels on the channel temperature profile. Microchannel reactor considered in the study is composed of five reaction channels with height and width ranging from 0.5 mm to 5.0 mm. Cooling surfaces is assumed to be in isothermal condition to account for the heat exchange between the surface and process channels. A gas mixture of $H_2$ and CO($H_2/CO$ molar ratio = 2) is used as a reactant and operating conditions are the following: GHSV(gas hourly space velocity) = $10000h^{-1}$, pressure = 20 bar, and temperature = 483 K. From the simulation study, it was confirmed that heat removal in an FT microchannel reactor is affected channel geometry variables. Of the channel geometry variables considered, channel height and width have significant effect on the channel temperature profile. However, gap between cooling surface and process channel, and gap between process channels have little effect. Maximum temperature in the reaction channel was found to be proportional to channel height, and not affected by the width over a particular channel width size. Therefore, microchannels with smaller channel height(about less than 2 mm) and bigger channel width (about more than 4 mm), can be attractive design for better heat removal and higher production.

Simple digital control of cell mass in biological CSTR (연속 교반 발효조에서 균체농도의 단순 디지탈 제어)

  • 이경범;황영보;이지태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.647-651
    • /
    • 1987
  • Yeast biomass in a biological continuous stirred tank reactor was controlled with an APPLE II microcomputer using adaptive control theory of bilinear systems. The controller used is as simple as a PID controller, but required less information. Cell concentration was well controlled by adjusting the inlet flow rate following the algorithm.

  • PDF

Study on a Small-scale Wastewater Treatment System using Biological Aerated Filter (생물학적 호기성필터를 이용한 소규모 하수처리시스템에 관한 연구)

  • Park, Chan G.;Jo, Eun Y.;Kim, Young H.;Park, Sung J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.41-45
    • /
    • 2014
  • The biological aerated filter (BAF) reactor is regarded as an effective biological wastewater treatment method. It can remove pollutants by carrier filtration and biodegradation. Due to its advantages, which include high biomass retention, tolerance to toxicity, excellent removal efficiency, and slurry separation, BAF has been widely used to remove COD, $NH_4{^+}-N$, phosphorus, and other harmful organic substances. In this study, the BAF reactor was used to remove organic contaminants of domestic wastewater of Korea at both the benchand pilot-scale. The main objectives of this study are to: (i) investigate the removal efficiency of organic contaminants (ex. COD, nitrate, phosphorus) in BAF reactors at both scales; (ii) characterize the small-scale wastewater treatment plant using the BAF reactor. The concentration of COD in the influent increased from 69 to 246 mg/L. During the operation period, the final effluent concentration of COD remained maximum 4.0 mg/L, and the average removal efficiency was above 88%. The present study investigated the removal efficiencies of COD, TN, TP and $NH_4{^+}-N$ from smelting wastewater by BAF system. When treating wastewater in both bench and pilot-scale reactors, the BAF worked well.

Modeling, simulation and structural analysis of a fluid catalytic cracking (FCC) process

  • Kim, Sungho;Urm, Jaejung;Kim, Dae Shik;Lee, Kihong;Lee, Jong Min
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2327-2335
    • /
    • 2018
  • Fluid catalytic cracking (FCC) is an important chemical process that is widely used to produce valuable petrochemical products by cracking heavier components. However, many difficulties exist in modeling the FCC process due to its complexity. In this study, a dynamic process model of a FCC process is suggested and its structural observability is analyzed. In the process modeling, yield function for the kinetic model of the riser reactor was applied to explain the product distribution. Hydrodynamics, mass balance and energy balance equations of the riser reactor and the regenerator were used to complete the modeling. The process model was tested in steady-state simulation and dynamic simulation, which gives dynamic responses to the change of process variables. The result was compared with the measured data from operating plaint. In the structural analysis, the system was analyzed using the process model and the process design to identify the structural observability of the system. The reactor and regenerator unit in the system were divided into six nodes based on their functions and modeling relationship equations were built based on nodes and edges of the directed graph of the system. Output-set assignment algorithm was demonstrated on the occurrence matrix to find observable nodes and variables. Optimal locations for minimal addition of measurements could be found by completing the whole output-set assignment algorithm of the system. The result of this study can help predict the state more accurately and improve observability of a complex chemical process with minimal cost.

Applicability of the lenten's Reagent Oxidation to Biological Fixed-Film Process for Reuse of Effluents from the Petrochemical Wastewster Effluent Treatment Plant (석유화학폐수 처리장 방류수의 재이용을 위한 고정생물막 공정에서 Fenton 산화전처리의 적응가능성)

  • Lee, Kyu-Hoon;Kim, Mi-Hwa;Park, Tae-Joo
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.115-115
    • /
    • 1995
  • Reuse of industrial effluents through the cooling systems in a petrochemical complex was described. The partial oxidation of the effluents from the biological treatment plant was examined, using Fenton''s reagent as a pretreatment step prior to a next treatment of the effluents. Next tertiary treatment using fixed-film reactor resulted in marked reductions in COD and suspended solids. The continuous fixed-film process with Fenton oxidation pretreatment showed a 23% increase in the COD removal efficiency when compared to that without pretreatment of Fenton oxidation under the volumetric organic loading rate of 0.1 kg COD/m3/day. The Fenton oxidation treatment seemed to be a possible method for tertiary biological treatment to reduce the residual toxicity with the enhanced biodegradation of the effluents.