• Title/Summary/Keyword: biological particles

Search Result 375, Processing Time 0.026 seconds

Synthesis of Nanoscale Zerovalent Iron Particle and Its Application to Cr(VI) Removal from Aqueous Solutions

  • Awad, Yasser M.;Abdelhafez, Ahmed A.;Ahmad, Mahtab;Lee, Sang-Soo;Kim, Rog-Young;Sung, Jwa-Kyung;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.402-407
    • /
    • 2010
  • Zerovalent iron (ZVI) is one of the most commonly used metallic reducing agents for the treatment of toxic contaminants in wastewater. Traditional ZVIs are less effective than nanoscale ZVI (nZVI) due to prolonged reaction time. However, the reactivity can be significantly increased by reducing the size of ZVI particles to nanoscale. In this study, nZVI particles were synthesized under laboratory condition and their efficiency in removing hexavalent chromium (Cr(VI)) from aqueous solutions were compared with commercially available ZVI particles. The results showed that the synthesized nZVI particles (SnZVI) reduced >99% of Cr(VI) at the application rate of 0.2% (w/v), while commercial nZVI (CnZVI) particles resulted in 59.6% removal of Cr(VI) at the same application rate. Scanning electron micrographs (SEM) and energy dispersive spectra (EDS) of the nZVI particles revealed the formation of Fe-Cr hydroxide complex after reaction. Overall, the SnZVI particles can be used in treating chromium contaminated wastewater.

Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol

  • Kwak, Ki-Yuel;Kim, Chong-Youp
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.35-40
    • /
    • 2005
  • Nanofluid is a novel heat transfer fluid prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. In this research we have considered the rheological properties of nanofluids made of CuO particles of 10-30nm in length and ethylene glycol in conjunction with the thermal conductivity enhancement. When examined using TEM, individual CuO particles have the shape of prolate spheroid of the aspect ratio of 3 and most of the particles are under aggregated states even after sonication for a prolonged period. From the rheological property it has been found that the volume fraction at the dilute limit is 0.002, which is much smaller than the value based on the shape and size of individual particles due to aggregation of particles. At the semi-dilute regime, the zero shear viscosity follows the Doi-Edwards theory on rodlike particles. The thermal conductivity measurement shows that substantial enhancement in thermal conductivity with respect to particle concentration is attainable only when particle concentration is below the dilute limit.

Comparative In Vitro Biological Toxicity of Four Kinds of Air Pollution Particles

  • Shin, Han-Jae;Cho, Hyun Gi;Park, Chang Kyun;Park, Ki Hong;Lim, Heung Bin
    • Toxicological Research
    • /
    • v.33 no.4
    • /
    • pp.305-313
    • /
    • 2017
  • Accumulating epidemiological evidence indicates that exposure to fine air pollution particles (APPs) is associated with a variety of adverse health effects. However, the exact physiochemical properties and biological toxicities of fine APPs are still not well characterized. We collected four types of fine particle (FP) (diesel exhaust particles [DEPs], natural organic combustion [NOC] ash, synthetic organic combustion [SOC] ash, and yellow sand dust [YSD]) and investigated their physicochemical properties and in vitro biological toxicity. DEPs were almost entirely composed of ultrafine particles (UFPs), while the NOC, SOC, and YSD particles were a mixture of UFPs and FPs. The main elements in the DEPs, NOC ash, SOC ash, and YSD were black carbon, silicon, black carbon, and silicon, respectively. DEPs exhibited dose-dependent mutagenicity even at a low dose in Salmonella typhimurium TA 98 and 100 strains in an Ames test for genotoxicity. However, NOC, SOC, and YSD particles did not show any mutagenicity at high doses. The neutral red uptake assay to test cell viability revealed that DEPs showed dose-dependent potent cytotoxicity even at a low concentration. The toxicity of DEPs was relatively higher than that of NOC, SOC, and YSD particles. Therefore, these results indicate that among the four FPs, DEPs showed the highest in vitro biological toxicity. Additional comprehensive research studies such as chemical analysis and in vivo acute and chronic inhalation toxicity tests are necessary to determine and clarify the effects of this air contaminant on human health.

Flotation Separation of Biological Floc Using the Dissolved Air Flotation Process (용존공기부상(DAF) 공정을 이용한 생물학적 플록의 부상분리)

  • Kwak, Dong-Heui;Kim, Seong-Jin;Lim, Young-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.649-655
    • /
    • 2004
  • The behavior of biological particles in DAF (dissolved air flotation) process was analyzed by employing PBT (Population balance theory). After decline growth phase of activated sludge, the value of the initial collision-attachment efficiency was increased over than 0.35 corresponding relatively high value in the whole life cycle of microorganism. For practical application of DAF as a solid separation process. It is desirable that microbial particles should be operated to perform high solid removal efficiency in biological wastewater treatment.

A Detection of Airborne Particles Carrying Viable Bacteria in an Urban Atmosphere of Japan

  • Hara, Kazutaka;Zhang, Daizhou;Yamada, Maromu;Matsusaki, Hiromi;Arizono, Koji
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.152-156
    • /
    • 2011
  • Viable bacteria on water-insoluble airborne particles were detected in the urban atmosphere of Kumamoto ($134^{\circ}45'E$, $32^{\circ}28'N$), Japan, in autumn 2008. Airborne particles were collected onto film-covered Cu meshes under clear weather conditions. The samples were stained by fluorescent stains, and then viewed and photographed with an epifluorescent microscope. Non-biological and bacterial parts in particles larger than 0.8 ${\mu}m$ were distinguished by their morphologies, fluorescent colors and fluorescent intensities. Bacterial viable statuses were discriminated according to cell membrane damage. In total, 2681 particles were investigated and it was found that 78 airborne particles were associated with bacteria. Viable bacteria were identified on 48 particles. A few particles carried multiple viable bacteria. These results provide the evidence that airborne particles act as carriers of viable bacteria in the atmosphere.

Soil Washing and Biodegradation Potentials of Amphiphilic Polyurethane(APU) Nano-network Particles

  • Kim, Young-Bum;Jang, Shin-A;Kim, Ju-Young;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.442-445
    • /
    • 2000
  • Amphiphilic polyurethane(APU) particle is a polymeric surfactant, and could increase the solubility of 2-methylnaphthalene significantly. 2-Methylnaphthalene was recovered by the precipitation of APU particles and was degraded by Acinetobacter sp. K2-2. APU particle was recovered and reused after treatment of triethylamine.

  • PDF

The Biocidal Activity of Nano-sized Silver Particles Comparing with Silver Ion (은 이온과의 비교를 통한 나노 은 입자의 항균 특성 연구)

  • Kim, Jee-Yeon;Kim, Sung-Eun;Kim, Jae-Eun;Lee, Jong-Chan;Yoon, Je-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.771-776
    • /
    • 2005
  • In recent days, there is much interest in the biocidal activity of silver since silver is known to be safe and effective as disinfectant and biocidal material against coliforms and viruses. In particular, nano silted silver particles which can be used as effective biocidal material received more attention. Accordingly, it is important to investigate antimicrobial activity and mechanism of nano sized silver particles prepared in a cost-effective manner. In this study, nano sized silver particles were prepared via photoreduction of a silver salt ($AgNO_3$) in the bulk phase of $PEO_{20}-PPO_{70}-PEO_{20}$ (Pluronic 123) block copolymer The antimicrobial efficacy of silver nano particles against E. coli was investigated and compared with that of silver ion as the concentration of silver nano particles, pH ($5.6{\sim}8.2$), temperature ($4^{\circ}C{\sim}35^{\circ}C$) varied in aqueous system. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was used to examine the nature of damaged microorganism with nano sized silver particles and silver ion. This study showed that antimicrobial efficacy of silver nano particles was approximately one twentieth than that of silver ion. It was more biocidal at higher pH in contrast with silver ion. In addition, nano silver particles was demonstrated to disrupt the outer membrane of E. coli, subsequently causing their aggregation. On the other hand, silver ion diffused into the cell damaging the cytoplasmic membrane without disrupting the outer membrane of E. coli.

Stability of Retroviral Vectors Against Ultracentrifugation Is Determined by the Viral Internal Core and Envelope Proteins Used for Pseudotyping

  • Kim, Soo-hyun;Lim, Kwang-il
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.339-345
    • /
    • 2017
  • Retroviral and lentiviral vectors are mostly pseudotyped and often purified and concentrated via ultracentrifugation. In this study, we quantified and compared the stabilities of retroviral [murine leukemia virus (MLV)-based] and lentiviral [human immunodeficiency virus (HIV)-1-based] vectors pseudotyped with relatively mechanically stable envelope proteins, vesicular stomatitis virus glycoproteins (VSVGs), and the influenza virus WSN strain envelope proteins against ultracentrifugation. Lentiviral genomic and functional particles were more stable than the corresponding retroviral particles against ultracentrifugation when pseudotyped with VSVGs. However, both retroviral and lentiviral particles were unstable when pseudotyped with the influenza virus WSN strain envelope proteins. Therefore, the stabilities of pseudotyped retroviral and lentiviral vectors against ultracentrifugation process are a function of not only the type of envelope proteins, but also the type of viral internal core (MLV or HIV-1 core). In addition, the fraction of functional viral particles among genomic viral particles greatly varied at times during packaging, depending on the type of envelope proteins used for pseudotyping and the viral internal core.

Preparation and Characterization of Lysozyme Nanoparticles using Solution Enhanced Dispersion by Supercritical Fluid (SEDS) Process (용액분산촉진 초임계 공정을 이용한 라이소자임 나노 입자의 제조 및 그 특성)

  • Kim, Dong-Hyun;Park, Hee-Jun;Kang, Sun-Ho;Jun, Seoung-Wook;Kim, Min-Soo;Lee, Si-Beum;Park, Jeong-Sook;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.2
    • /
    • pp.89-94
    • /
    • 2005
  • The micron or nano-sized lysozyme as a model protein drug was prepared using solution enhanced dispersion by supercritical fluid (SEDS) process at various conditions (e.g., solvent, temperature and pressure) to investigate the feasibility of pulmonary protein drug delivery. The lysozyme particles prepared were characterized by laser diffraction particle size analyzer, scanning electron microscopy (SEM) and powder X-ray diffractometry (PXRD). The biological activity of lysozyme particles after/before SEDS process was also examined. Lysozyme was precipitated as spherical particles. The precipitated particles consisted of 100 - 200 nm particles. Particle size showed the precipitates to be agglomerates with primary particles of size $1\;-\;5 \;{\mu}m$. The biological activity varied between 38 and 98% depending on the experimental conditions. There was no significant difference between untreated lysozyme and lysozyme after SEDS process in PXRD analysis. Therefore, the SEDS process could be a novel method to prepare micron or nano-sized lysozyme particles, with minimal loss of biological activity, for the pulmonary delivery of protein drug.

Biocompatible Dispersion Methods for Carbon Black

  • Kim, Hwa;Park, Kwangsik;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.209-216
    • /
    • 2012
  • The biological activity of particles is largely dependent on their size in biological systems. Dispersion in the aqueous phase has been both a critical impediment to and a prerequisite for particle studies. Carbon black has been used as a surrogate to investigate the biological effects of carbonaceous particles. Here, biocompatible methods were established to disperse carbon black into ultrafine and fine particles which are generally distinguished by the small size of 100 nm. Carbon black with a distinct particle size, N330 and N990 were suspended in blood plasma, cell culture media, Krebs-Ringer's solution (KR), or physiological salt solution (PSS). Large clumps were observed in all dispersion preparations; however, sonication improved dispersion - averaged particle sizes for N330 and N990 were $85.0{\pm}42.9$ and $112.4{\pm}67.9$ nm, respectively, in plasma; the corresponding sizes in culture media were $84.8{\pm}38.4$ and $164.1{\pm}77.8$ nm. However, sonication was not enough to disperse N330 less than 100 nm in either KR or PSS. Application of Tween 80 along with sonication reduced the size of N330 to less than 100 nm, and dispersed N990 larger than 100 nm ($73.6{\pm}28.8$ and $80.1{\pm}30.0$ nm for N330 and $349.5{\pm}161.8$ and $399.8{\pm}181.1$ nm for N990 in KR and PSS, respectively). In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) exhibited little effect. Electron microscopy confirmed the typical aciniform structure of the carbon arrays; however, zeta potential measurement failed to explain the dispersibility of carbon black. The methods established in this study could disperse carbon black into ultrafine and fine particles, and may serve as a useful model for the study of particle toxicity, particularly size-related effects.