• Title/Summary/Keyword: biological odor treatment system

Search Result 19, Processing Time 0.023 seconds

Shipboard sewage treatment by SBR process with BM (BM 미생물제제를 이용한 크루즈선 오·폐수 처리)

  • Lee, Eon-Sung;Kim, In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.10
    • /
    • pp.817-822
    • /
    • 2011
  • Lab scale experiment study was carried out for biological treatment process development in cruise. SBR(Sequence Batch Reactor) process with BM(Beneficial Microorganisms) was investigated for practical application on shipboard sewage treatment. From the results it was suggested that SBR process with BM might be a suitable process for cruise sewage treatment in terms of decrease in odorous compounds, maintenance of useful microorganisms and creating special environmental conditions. By adding BM to SBR system, odor unit of sulfur compounds was about 20 times reduced.

Design of waste Sludge/Food Waste Biological Treatment Process using Closed ATAD System (밀폐형 ATAD system을 이용한 하수슬러지/음식물쓰레기 통합처리 공정 설계)

  • Kwon, Hyeok-Young;Ji, Young-Hwan;Song, Han-Jo;Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.129-137
    • /
    • 2000
  • In this study, biological treatment process of MWWT(Municipal wet-waste Treatment) has been developed through a moduling of the containerized closed ATAD(Auto thermal aerobic digestion) system & closed vertical dynamic acerator, which were used for food waste and cattle manure, respectively. Though biological process has several advantages such as low concentrations of heavy metals and salts, proper and stable C/N ratio and constant reaction rate against the process treating two wastes separately, it has a obstacles of salt concentration and much usage of bulking agent such as wood chip. After rapid oxidation in the boxed tower reactor for 5 days, the content of sewage sludge would be reduced 65% on around, might be mixed with the food waste that had been treated in the static closed reactor during 6 days and put in the secondary static reactor for curing. During composting process, the odor contained in the gas generated from the reactor was removed by passing it through a biofilter as well as the leachate was treated in the wastewater treatment facility. Consequently, it seemed to be possible to compost sewage sludge at mild and stable operating condition and at low cost through the biological ATAD process resulting in the production of organic compost satisfying the specifications regulated by itself.

  • PDF

The Cultural and Environmental Unsoundness of the Chinese Public Squatting-Type Toilet: A Case Study toward a Sustainable Excreta Treatment System

  • Chang, Jin-Soo
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • The inconvenient truth of sustainable public squat toilet culture varies among nationalities. This culture may be comfortable to the people of China, yet uncomfortable to the non-Chinese, according to the adequate environmental management in Yanbian Korean Autonomous Prefecture (YKAP), northern China. We conducted a series of field surveys and individual interviews (Chinese n = 1,000 and non-Chinese [foreign visitors] n = 100) on several aspects of the public squat toilet: structural properties, waste disposal methods, important factors, and overall satisfaction level. The significant factors in response to the public squat toilets were cleanliness, odor, toilet paper, temperature, soap, other facilities, and presence of cubicles. These factors should be policy priorities of the local government. In addition, 66.2% of Chinese and 91% of foreign visitors desired type E toilets (two full-high partition walls and a door). The results illustrate the nature of a sustainable and beautiful approach to the culturally and environmentally sound management of various types of public squat toilet in YKAP. The government needs to focus on the future-oriented and excreta treatment management of the sustainable toilet culture for residents and visitors of YKAP.

Performance for a small on-site wastewater treatment system using the absorbent biofilter in rural areas (흡수성 Biofilter 를 이용한 농촌 소규모 오수처리 시설의 성능)

  • Kwun, Soon-Kuk;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.310-315
    • /
    • 1999
  • The feasibility of an absorbent biofilter system was examined for rural wastewater treatment. Hydraulic loading rates varied from 50 to 250 cm/day. Effluent of the septic tank was fed into the absorbent biofilter, and small ventilation fan was provided to supply air at the rate of 250 L/min to aerate the biofilter. The biofilter system demonstrated high removal rates for $BOD_5$ and TSS at the loading rate of 150 cm/day, generally meeting the Korean effluent water quality standard of 20 mg/L applicable to both. The nutrient removal was less satisfactory than the results of $BOD_5$ and TSS, but it was within the expected range of biological treatment processes. Considering the abnormally high influent concentration of nutrients during the experiment, better performance results could have been obtained if ordinary domestic wastewater was used. The system performance was not significantly affected by the hydraulic loading up to 150 cm/day, which is far more than the loading limit of the sand filter systems. Maintenance requirement was minimal, and no problems with noise, odor, flies or sludge arose. Since the biofilter system can be operated at a distance, operation in remote rural area and multi-system connected to one control office might be advantageous to the rural area. Overall, considering the cost-effectiveness, stable performance, and minimum maintenance, the biofilter system was thought to be a competitive alternative to treat wastewater in Korean rural communities.

  • PDF

Field Applicability Evaluation Using Effective Microorganism Brewing Cycle for Contaminated Soil in Water Retention Basin (복합발효미생물을 이용한 하천유수지 오염토의 현장적용성 평가)

  • Shin, Eunchul;Jung, Minkyo;Kim, Kyeongsig;Kang, Jeongku
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.35-43
    • /
    • 2016
  • In this study, by using a Effective Microorganisms Brewing Cycle, it confirmed the purification effect of pollutants that are adsorbed on the basins stench removal and retarding soil. On the basis of on-site application test, a soil decontamination system will be suggested. Using a Effective Microorganisms Brewing Cycle, the odor concentration is reduced 2.5 times than that of natural purification treatment method. It was measured and found that the quality of the pore water discharged from the soil is improved. In addition, it was found that a composite of copper and lead with the fermentation microorganisms adsorbed on soil particles from the surface of the stirred experiments lagoon mixed soil is reduced to 65% and 66%, respectively, The TPH organic component was confirmed that the reduction effect of 85%. Restoration of reservoir contaminated soils using the effective microorganism brewing cycle needs to be more developed and implemented as a long-term purification system. This study may be a good reference of developing more complete microorganism brewing system which will efficiently reduce the odor and soil contamination based on optimal stirring and mixing ratio of the compound solutions and contaminated soils in reservoir.

Effect of Compost Turning Frequency on the Composting and Biofiltration (퇴비화 및 탈취처리에 퇴비 혼합 교반 빈도가 미치는 영향)

  • Hong Ji-Hyung;Park Keum-Joo
    • Journal of Animal Environmental Science
    • /
    • v.12 no.2
    • /
    • pp.85-94
    • /
    • 2006
  • The effects of turning frequency of in-vessel composting on ammonia emissions during composting of separated solids from swine slurry/sawdust mixtures and performance of biofiltration using the chicken manure compost were investigated. Separated solids from swine manure amended with sawdust was composted in a 226 L laboratory-scale in-vessel reactors under various turning frequency and continuous airflow (0.6 L/min.kg.dm) for three weeks. Three laboratory-scale manure compost biofilters were built to treat effluent gas from the composting of separated solid from swine manure amened with sawdust process. These experiments were continued over a period of three weeks. The composting of separated solid swine manure amended with sawdust and manure compost biofiltration system were evaluated to determine the turning frequency type that would be adequate for the rate of decomposition and compost odour reduction. The compost odour cleaning was measured based on ammonia gas concentration before and after passing through the manure compost biofilter. The average ammonia odor reduction in the manure compost biofilter was 96.9 % at R1 (no turning), 99.4 % at R2(once a day turning) and 89.0 % at R3(twice a day turning), respectively. The efficiency of ammonia reduction was mainly influenced by the turning frequency.

  • PDF

Evaluation of Autoheated Thermophilic Aerobic Digestion Process for the Treatment of Pig Manure Wastewater (돈사폐수의 고온 호기성 소화공정 적용 타당성 평가)

  • Chung, Yoon-Jin;Cho, Jong-Bok;Lee, Jin-Yong;Lee, Jong-Hyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.103-114
    • /
    • 1995
  • Since autoheated thermophilic aerobic digestion (ATAD) process has various advantages for the treatment of high-strength organic wastewater, active research and field application has been applied in U.S.A. and Canada, recently and the interest in ATAD process has been elevated for treating high-strength organic wastewater efficiently in Korea. Therefore, various experiments were carried out to evaluate the feasibility of ATAD process for the treatment of pig manure wastewater. The results of this study showed possibility to reuse pig manure wastewater as wet fodder or liquid compost, since ATAD process led excellent stabilization on the basis of odor and putrefaction. However. digested sludge can not be provided as wet fodder to most of hog farms without changing dry feeder system into wet system and as liquid compost to hog farms not having their own grass land. Since the results showed that the increase of temperature in reactor was resulted not from energy by biological activity. but from mechanical mixing energy. the reactor investigated in this study was against the principle of ATAD process. Therefore. if pig manure wastewater treated by ATAD can not be utilized as wet fodder. it is not economical to adopt ATAD process only for the treatment of wastewater.

  • PDF

An Assessment on Efficiency of MBAS Removal in Urban Stream Maintenance Water by Using Sand Filtration (모래여과를 이용한 도시하천유지용수의 MBAS 제거 효율 평가)

  • Kim, hong bae;Ahn, kyung soo
    • Journal of Wetlands Research
    • /
    • v.8 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • Biological enhanced treatment and send filtration are established being operated to remove nutrients and MBAS(Methylene Blue Activate Substance) in the most of Waste Water Treatment Plant(WWTP) in Korea. However, untreated synthetic detergents and nutrients which directly run into the water system present an unpleasant view because of the foam, taste and odor generating filamentous periphytic algae and interrupting self-purification in the stream. Therefore, this research was enforced to know the MBAS removal efficiency of the sand filtration about G WWTP which reuses effluent as urban stream management water. As a result, the maximum removal efficiency using sand filtration was 63% after 24 hours and particularly 30% after 2 or 4 hours which turned out to be not that effective. In conclusion, It is recognized that other methods of MBAS removal and a research will be needed which reuse effluent as urban stream management water from now on. Because the MBAS removal with sand filtration is insufficient with economical efficiency from the fact that it needs long hours for a sand filtration treatment and the removal efficiency was almost below the expectation.

  • PDF

Technical and Economical Assessment of Adsorption and Reverse Osmosis for Removal of Ammonia from Groundwater of Kathmandu, Nepal (네팔 카트만두 지하수에서 암모늄 제거를 위한 이온 교환 및 역삼투의 기술 및 경제 평가)

  • Kunwar, Pallavi;Ahn, Jaewuk;Baek, Youngbin;Yoon, Jeyong
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.174-182
    • /
    • 2020
  • The permissible limit of ammonia concentration in drinking water recommended by the World Health Organization (WHO) is 1.5 mg/L. However, in the case of groundwater in Kathmandu, Nepal, the concentration of ammonia fluctuates dramatically from 0 to 120 mg/L at different locations and groundwater depths (Chapagain et al., 2010). Such a high concentration of ammonia causes aesthetic problems in drinking water, such as bad taste and odor; hence, prior treatment is required. In Kathmandu, half of the population utilizes groundwater, which is also employed for drinking water, but owing to a lack of knowledge of household water filters, residents of Kathmandu tend to depend greatly on commercially available jar water than on the installation of a proper household filtration method. Thus, in our study, we employed adsorption and reverse osmosis (RO) as two of the most viable decentralized/household treatment options to address the issue of high contamination of ammonia in drinking water. We evaluated their performances from technical and the economic perspectives using synthetically prepared groundwater at varying ammonia concentrations (50 mg/L and 15 mg/L). Consequently, it was found that adsorption via ion exchange (IE) resin was a comparatively better ammonia removal technology than RO, with 100% ammonia removal even after regeneration; the removal by RO was limited to up to 90%. Furthermore, our study suggests that IE is the most suitable ammonia removal technology for places with lower water consumption (< 50 L/day), whereas RO seemed to be a cost-effective technology for places with higher water consumption, where the daily water demand exceeds 50 L/day. Lastly, these assessments suggest that installing a suitable household treatment system would be more efficient and sustainable from both technical and economic points of view than purchasing commercially bottled water.