• Title/Summary/Keyword: biological methods

Search Result 4,322, Processing Time 0.036 seconds

Comparison of Bioavailability and Biological Transfer Factor of Arsenic in Agricultural Soils with Different Crops

  • Oh, Se Jin;Kim, Sung Chul;Ok, Yong Sik;Oh, Seung Min;Ji, Won Hyun;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.518-524
    • /
    • 2014
  • Heavy metal pollution in agricultural field near at the abandoned metal mines has been a critical issue in Korea. In particular, bioaccumulation in plants can have detrimental effect on human health. Main objective of this research was to examine arsenic (As) concentration in soil with varied extraction methods and to determine bioaccumulation and biological transfer factor in different crops. Results showed that bioaccumulation ratio of As for total contents in soil was ordered leafy and stem vegetables (1.19%) > fruit bearing vegetables (0.79%) > pulses (0.40%) > root vegetables (0.36%) with different crop species. Among 6 different extraction methods, all of extraction methods showed high correlation ($R^2=0.87-0.97$) except DTPA ($R^2=0.25$) when comparing As concentration in soil extracted with different extractants and As concentration in each crops. Calculated biological transfer factor was ranged 0.002-0.018 depending on crop species. Overall, concentration of As in crops can be varied and best management practice for minimizing bioaccumulation of As should be considered depending on crop species.

Exposure Assessment for Airborne Biological Agents in Sawmills (제재업의 생물학적인자 노출실태 평가)

  • Park, Hae-Dong;Park, Hyun-Hee;Lee, In-Seop
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.4
    • /
    • pp.274-281
    • /
    • 2010
  • The objectives of this study are (a) to investigate the distribution patterns and exposure concentrations of biological agents in sawmill industries and (b) to compare sampling methods of biological agents. The representative processes of 5 sawmills were selected to measure total airborne bacteria, fungi, endotoxin as well as dust. Airborne bacteria and fungi were measured with one stage impactor, six stage impactor and gelatin filteration methods. Endotoxin was collected with polycarbonate filters and analysed by kinetic chromogenic Limulus Amebocyte Lysate method. Geometric mean levels of airborne bacteria, fungi, endotoxin and dust were 1,864 CFU/$m^3$, 2,252 CFU/$m^3$, 31.5 EU/$m^3$ and 2.4 mg/$m^3$. The ratios of indoor/outdoor concentrations were 3.7 for bacteria, 4.1 for fungi, 3.3 for endotoxin and 9.7 for dust. The respiratory fractions of bacteria were 68.0, 50.9, 49.2 and 45.1% in band-saw, table-saw, rip-saw process and outdoor air. The respiratory fractions of fungi were 78.7, 90.8, 87.5 and 84.8% in band-saw, table-saw, rip-saw process and outdoor air, respectively. There was no significant differences in bacterial concentrations among single stage, six stage impaction and filteration methods. But, fungal concentrations measured with filtration methods were significantly higher than those with impaction methods. Geometric mean levels of airborne bacteria and fungi were higher than the OSHA guideline values of 1,000 CFU/$m^3$. The respiratory fractions of fungi were above 75%. The concentrations of biological agents were significantly different among culture-based sampling methods. In the exposure assessments of biological agents, further studies are needed for the comparisons of diverse sampling methods and the investigations of environmental factors.

The Analysis of Studies Related to the Learning Methods of Biological Nursing Subjects in Korea (국내 기초간호학 교육에 대한 학습법 관련 연구 분석)

  • Park, Jong-Min;Baek, Kyoung Hwa
    • Journal of Korean Biological Nursing Science
    • /
    • v.20 no.2
    • /
    • pp.92-102
    • /
    • 2018
  • Purpose: The purpose of this study was to analyze the current status of studies related to the learning methods of biological nursing subjects in Korea. Methods: Five databases (KoreaMed, KMbase, NDSL, KISS, KiSTi) and grey literature were searched prior to February 2018. A total 12 studies met the inclusion criteria including 11 articles and 1 proceeding. Results: We included five experimental studies, five non-experimental studies, and two mixed method studies. First, most of the studies that applied a learning method focused on the subject of human anatomy and physiology; team-based learning was the method that was utilized the most. Second, the necessity of well-designed research was confirmed because the quality of included studies was low. Third, the research variables identified were mainly concentrated on the affective domain, and included satisfaction, motivation, self-efficacy, self-directed learning, confidence, attitude. We confirmed the need to develop a learning program that can also improve the cognitive and psychomotor domain variables in future research. Conclusion: The results of this study suggest that further research should be conducted with consideration the domain of research variables evenly. In addition, future studies should apply various learning methods and included randomized controlled trials.

Metabolomics in Natural Products Research (천연물 연구에서의 메타볼로믹스)

  • Chan Seo;Tae-Su Kim;Bo-Ram Kim;Su Hui Seong;Jin-Ho Kim;Ha-Nul Lee;Sua Im;Jung Eun Kim;Ji Min Jung;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.16-16
    • /
    • 2023
  • Metabolomics is the study of global metabolite profiles in a system (cell, tissue, or organism) under a given set of conditions. Metabolomics has its roots in early metabolite profiling studies but is now a rapidly expanding area of scientific research in its own right. In this study, the applications of metabolomics in natural product studies are explored. Ginseng is a well-known herbal medicine and has various pharmacological effects, which include antiaging, anticancer, antifatigue, memory enhancing, immunomodulatory, and stress reducing effects. Metabolomic analysis of organic acids has not been performed for evaluation whether ginseng has been cultivated using conventional or environmental-friendly farming methods. In this study, profiling analysis was conducted for organic acids (OAs) in ginseng roots produced using conventional or environmentfriendly farming methods at five locations in each of five regions. In OA profiles, lactic acid was the most abundant OA in all regions, with the exception for environmentally friendly farmed ginseng in two of the five regions, in which glycolic acid was most abundant OA. OA profiles in all regions showed isocitric acid levels were increased by environment-friendly cultivation, which suggests metabolic differences associated from farming method, and that isocitric acid might be a useful discriminatory biomarker of environmental-friendly and conventional cultivation. The results of the present study suggest metabolomic studies of OAs in ginseng roots might be useful for monitoring whether ginseng has been cultivated using conventional or environmentally friendly farming methods.

  • PDF

Comparison of Near-Infrared Spectroscopy with Raman Spectroscopy from the Point of Nondestructive Analysis of Biological Materials

  • Takeyuki Tanaka;Hidetoshi Sato;Jung, Young-Mee;Yukihiro Ozaki
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.9-20
    • /
    • 2000
  • Recently, near-infrared (NIR) spectroscopy and Raman spectroscopy have received keen interest as powerful techniques for nondestructive analysis of biological materials. The purpose of this review paper is to compare the advantages of NIR and Raman spectroscopy in the nondestructive analysis. Both methods are quite unique and often complementary. For example. NIR spectroscopy is very useful in monitoring in situ the content of components inside biological materials while Raman spectroscopy is very suitable for identifying micro-components on the surface of biological materials. In this article specific characters of the two spectroscopic methods are discussed first and then several examples of applications of NIR and Raman spectroscopy to the biological nondestructive analysis are introduced.

Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods

  • Yeonjae Ryu;Geun Hee Han;Eunsoo Jung;Daehee Hwang
    • Molecules and Cells
    • /
    • v.46 no.2
    • /
    • pp.106-119
    • /
    • 2023
  • With the increased number of single-cell RNA sequencing (scRNA-seq) datasets in public repositories, integrative analysis of multiple scRNA-seq datasets has become commonplace. Batch effects among different datasets are inevitable because of differences in cell isolation and handling protocols, library preparation technology, and sequencing platforms. To remove these batch effects for effective integration of multiple scRNA-seq datasets, a number of methodologies have been developed based on diverse concepts and approaches. These methods have proven useful for examining whether cellular features, such as cell subpopulations and marker genes, identified from a certain dataset, are consistently present, or whether their condition-dependent variations, such as increases in cell subpopulations in particular disease-related conditions, are consistently observed in different datasets generated under similar or distinct conditions. In this review, we summarize the concepts and approaches of the integration methods and their pros and cons as has been reported in previous literature.

A Basic Study on the Variation of Temperature Characteristics for Attenuation Coefficient and Sound Velocity in Biological Tissues

  • Park, Heung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.273-282
    • /
    • 1993
  • This study is concerned with the temperature dependence characteristics of ultrasound parameters in biological tissues, which are basic on the noninvasive deep body temperature estimation. Used parameters are ultrasonic attenuation coefficient and sound velocity In order to accomplishment our purpose, several signal processing methods were used. Attenua4iorl coefficient was estimated by spectral difference method and sound velocity was estimated by P-P method. And we also examined these methods through a series of IN VITRO experi mentis that used tissue-mimicking phantom samples and biological tissue samples. In order to imitate the biological soft tissue two kinds of phantom samples are used, one is agar phantom sample which is composed of agar, graphite, N-propyl alcohol and distilled water, and the other is fat phantom sample which is composed of pure animal fat. And the ultrasound transmission mode and reflection mode experiments are performed on the pig's spleen, kidney and fat. As a result, it is found that the temperature characteristics are uniform in case of phan- tom samples but not in biological tissues because of complicate wave propagation within them. Consequently, the possibility of temperature measurement using ultrasound on biological tissue is confirmed and its results may contribute to the establishment of reference values of internal temperature measurement of biological tissues.

  • PDF

BIOLOGICAL HUMAN MONITORING OF CARCINOGEN EXPOSURE: A NEW STRATEGY IN CANCER PREVENTION

  • Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.63-73
    • /
    • 1990
  • Human exposure to environmental carcinogens can be detected by a number of methods including immunoassay, $^{32}P-postlabeling$ assay, and fluorescence technique. These assays have been applied to measure biological markers of carcinogen-adducts formed with macromolecules such as DNA, RNA and protein. In an attempt to investigate causal relationships between carcinogen exposure and tumor formation, specific carcinogen-adducts have been quantitated from human tissues and body fluids of cancer patients, occupational workers heavily exposed to certain carcinogens, smokers and controls. Carcinogens studied for biological human monitoring include benzo(a)pyrene, aflatoxin B1, UV light, ethylene oxide, 8-methoxypsoralen, 4-aminobiphenyl, vinyl choride, N-nitrosamine, cisplatin and other chemotherapeutic agents. Relevance of human monitoring for cancer research, progress in this field, methods to detect carcinogen-adducts are reviewed here. It is hoped that these approaches will be used for the risk assessment of carcinogen exposure, cancer etiology study and cancer prevention in humans.

  • PDF

BIOLOGICAL HUMAN MONITORING OF CARCINOGEN EXPOSURE: A NEW STRATEGY IN CANCER PREVENTION

  • Lee, Byung-Mu
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.61-61
    • /
    • 1990
  • Human exposure to environmental carcinogens can be detected by a number of methods including immunoassay, $^{32}P$-postlabeling assay, and fluorescence technique. These assays have been applied to measure biological markers of carcinogen-adducts formed with macromolecules such as DNA, RNA and protein. In an attempt to investigate causal relation ships between carcinogen exposure and tumor formation, specific carcinogen-adducts have been quantitated from human tissues and body fluids of cancer patients, occupational workers heavily exposed to certain carcinogens, smokers and controls. Carcinogens studied for biological human monitoring include benzo(a)pyrene, aflatoxin B1, UV light, ethylene oxide, 8-methoxypsoralen, 4-aminobiphenyl, vinyl chloride, N-nitrosamine, cisplatin and other chemotherapeutic agents. Relevance of human monitoring for cancer research, progress in this field, methods to detect carcinogen-adducts are reviewed here. It is hoped that these approaches will be used for the risk assessment of carcinogen exposure, cancer etiology study and cancer prevention in humans.

Blood Glucose Measurement Principles of Non-invasive Blood Glucose Meter: Focused on the Detection Methods of Blood Glucose (무채혈 혈당 측정기의 혈당 측정 원리: 혈당 검출방법 중심으로)

  • Ahn, Wonsik;Kim, Jin-Tae
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.114-127
    • /
    • 2012
  • Recent technical advancement allows noninvasive measurement of blood glucose. In this literature, we reviewed various noninvasive techniques for measuring glucose concentration. Optical or electrical methods have been investigated. Optical techniques include near-infrared spectroscopy, Raman spectroscopy, optical coherence technique, polarization, fluorescence, occlusion spectroscopy, and photoacoustic spectroscopy. Electrical methods include reverse iontophoresis, impedance spectroscopy, and electromagnetic sensing. Ultrasound, detection from breath, or fluid harvesting technique can be used to measure blood glucose level. Combination of various methods is also promising. Although there are many interesting and promising technologies and devices, there need further researches until a commercially available non-invasive glucometer is popular.