• Title/Summary/Keyword: biological constituents

Search Result 323, Processing Time 0.023 seconds

Volatile Flavor Constituents in the Rhizoma of Gastrodia elata (천마의 휘발성 향기성분)

  • Kim, Young-Kyoo;Lee, Jong-Won
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.455-458
    • /
    • 1997
  • Crude oils in the rhizoma of fresh and dried Gastrodia elata were obtained by a simultaneous steam distillation and extraction(SDE) method using n-pentane/diethyl ether (1 : 1) as solvent, and their volatile constituents were analyzed by gas chromatography-mass spectrometry(GC/MS) A total of 39 volatile flavor constituents (11 acids, 13 alcohols,6 hydrocarbons,7 carbonyls,2 esters) and 25 constituents (6 alcohols, 13 acids, 4 hydrocarbons, 1 carbonyl, ester) were identified in the fresh and dried Gastrodia elate respectively. The major volatile components of the fresh and dried sample were hexadecanoic acid(66.78%, 50.72%), 9-hexadecenoic acid(8.07%, 9.58%), heptadecanoic acid(2.01%, 0.13%), pentadecanoic acid(6.41%, 4.94%), p-cresol(1.43%,0.52%) and cyclododecene(1.83%, 6.00%).

  • PDF

Peroxide Constituents in the Natural Product Research (천연물 연구에서의 Peroxide 성분)

  • Lee, Kang-Ro
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.3
    • /
    • pp.145-155
    • /
    • 1991
  • Peroxides in natural products have been recently received a considerable attention due to their various biological and pharmacological properties. Nearly 300 peroxides have been isolated and structually characterized from natural sources, mainly as constituents of Compositae and marine sponge, and occur randomly in about 10 other plant families. Among peroxides studied, sesquiterpene endoperoxide, quinghaosu, has been already clinically applied as a new antimalarial drug. Based on the peroxides reported, structural classification, natural distribution and biological and pharmacological activities are reviewed. Color reagent and spectroscopic identification of peroxide are also described.

  • PDF

Chemical Constituents of the Himalayan Yew, A Review

  • Das, Biswanath;Anjani, G.
    • Natural Product Sciences
    • /
    • v.4 no.4
    • /
    • pp.185-202
    • /
    • 1998
  • A large number of chemical constituents have been reported from the Himalayan yew [Taxus baccata (Linn) or T. wallichiana (Zucc)]. These constituents are mainly taxoids and phenolics. Taxol, a lead anticancer agent, is the most important constituent. Other compounds have also been found to possess interesting biological properties. The literature concerning the chemistry and bioactivity of the constituents of the Himalayan yew has been briefly reviewed.

  • PDF

Bioactive Constituents of Marine Sponges of the Genus Spongosorites

  • Bao, Baoquan;Hong, Jongki;Lee, Chong-O.;Cho, Hee Young;Jung, Jee H.
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.144-155
    • /
    • 2006
  • This report reviews the literatures on chemical constituents of marine sponges of the genus Spongosorites and also highlights our own research. Specific biological activities of the metabolites from these sponges include: cytotoxic, antitumor, antibacterial, antifungal, antiviral, anti-inflammatory, and other pharmacological activities.

  • PDF

Physio-chemical studies on the after-ripening of hot pepper fruits (part 6) -Hot-taste component in different parts and of capsaicin homologues- (신미종(辛味種)고추의 추숙(追熟)에 관(關)한 생리화학적(生理化學的) 연구(硏究) [제 6 보(第 6 報)] -부위별(部位別)과 Capsaicin 동족체별(同族體別)로 본 신미성분(辛味成分)의 변화(變化)-)

  • Lee, Sung-Woo
    • Applied Biological Chemistry
    • /
    • v.14 no.2
    • /
    • pp.157-163
    • /
    • 1971
  • Variations of hot-taste constituents during the age of after-ripening in different anatomical parts and capsaicin series components of hot-pepper fruits were studied 1. Capsaicin homologues were composed nearly same portion during the after-ripening. 2. Percent amounts of hot-taste constituents per dried pepper fruit (except seeds) increased constantly during the after-ripening. And this suggests the production of hot-taste constituents and changeable mutual relations between various constituents. 3. Notable amounts of hot-taste constituents were contained in placentae and dissepiment and increased in succession until the climacteric onset stage, but after this period decreased. On the contrary, a constant increasing tendency were shown in pericarp. These results are presumable to understanding the role of the pepper fruits in regulating constituents transport from one part to another. 4. In the seeds, there was not marked amounts of hot-taste constituents, but increased quite slightly during the after-ripening.

  • PDF

Essential Oil of Marrubium vulgare: Chemical Composition and Biological Activities. A Review

  • Yabrir, Benalia
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.81-91
    • /
    • 2019
  • Marrubium vulgare, plant species belonging to Marrubium genus, is widespread in the Mediterranean areas, introduced elsewhere and also cultivated in many countries. Its oil is recognized to possess a considerable biological activities with varied chemical composition. This paper aims to overview the chemical composition and biological activities of M. vulgare essential oil's considered as a medicinal plant, widely used in folk medicine overall the world. In essential oils of M. vulgare, germacrene D, ${\beta}$-caryophyllene, ${\beta}$-bisabolene, bicyclogermacrene and carvacrol are generally considered as either mains or minor constituents and each species presents its own composition. Sesquiterpenoids were the dominant fraction while monoterpenoids were present in appreciable or in trace amount. Oxygenated fractions dominated in monoterpenes however, hydrocarbon fraction overpowered in sesquiterpenes. These oils are biologically active, they exhibit an antioxidant and antimicrobial activities and other activities. Due to the variability of composition of essential oil, further studies are necessary, particularly regarding their chemical's which may cause an important change in the biological activities of oils and probably defined different chemotype.

Quantitative Determination of Flavor Constituents of Korean Milgam (Citrus unshiu) Juice (밀감 쥬스 향기(香氣) 성분(成分)의 정량(定量))

  • Kim, H.;Jo, D.H.;Park, Y.H.;Lee, C.Y.;Lee, Y.H.
    • Applied Biological Chemistry
    • /
    • v.23 no.2
    • /
    • pp.106-114
    • /
    • 1980
  • The flavor constituents of Korean Milgam were extracted with a nitrogen gas stream under partial vacuum and identified by gas liquid chromatography. By employing the extraction coefficient, it was possible to determine the concentration of components in Milgam as well as in the extracts. Among 53 GLC peaks, 26 components were identified. Ethanol was the most abundant component (140ppm), followed by limonene (120ppm). These two were the most important flavor constituents.

  • PDF

Composition and Cytotoxicity of Essential Oil from Korean rhododendron (Rhododendon mucronulatum Turcz. var. ciliatum Nakai) (털진달래(Rhododendon mucronulatum Turcz. var. ciliatum Nakai) 정유의 성분분석과 독성평가)

  • Park, Yu-Hwa;Kim, Song-Mun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.233-237
    • /
    • 2008
  • The essential oil was obtained from the aerial part of Rhododendon mucronulatum Turcz. var. ciliatum Nakai by steam distillation, samples were collected by headspace (HS) and solid-phase microextraction (SPME) methods, and the compositions of the oil were analyzed by gas chromatography-mass spectrometry (GC-MS). Nineteen constituents were identified from the essential oil: 15 carbohydrates, 3 alcohols, and 1 acetates. Major constituents were 2-${\beta}$-pinene (16.1%), camphene (11.9%), ${\delta}$-3-carene (11.4%), d,l-limonene (9.5%), and ${\gamma}$-terpinene (9.5%). By SPME extraction, seventeen constituents were identified: 13 hydrocarbons, 1 alcohol, 1 nitrogen-containing compound, 1 acetate, and 1 amine. Major constituents of the SPME-extracted sample were cam phene (19.6%), 2-${\beta}$-pinene (18.0%), ${\delta}$-3-carene (17.4%), trimethyl hydrazine (9.7%), ${\gamma}$-terpinene (8.5%), and d,l-limonene (5.5%). By HS extraction, thirteen constituents were identified: 11 hydrocarbons, 1 alcohol, and 1 nitrogen-containing compound. Major constituents of the HS-extracted sample were camphene (25.8%), ${\delta}$-3-carene (24.8%), 2-${\beta}$-pinene (20.2%), d,l-limonene (5.4%), tricyclene (5.1%) and trimethyl hydrazine (4.6%). The fragrance of the essential oil was coniferous, balsamic, and woody, and the $IC_{50}$ value of the essential oil was 0.030 ${\mu}g/mg$ in MTT assay using UaCaT keratinocyte cell line.

Recent Advances in Studies on Chemical Constituents and Biological Activities of Korean Black Ginseng(Panax ginseng C. A. Meyer) (흑삼의 화학성분 및 생리활성에 대한 최근 연구)

  • Nam, Ki Yeul;Kim, Yeong Su;Shon, Mi Yae;Park, Jong Dae
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.3
    • /
    • pp.173-188
    • /
    • 2015
  • We have conducted a comprehensive literature review regarding the chemical constituents and biological activities of Korean black ginseng(Panax ginseng C. A. Meyer), three to nine times-steamed and dried ginseng, which shows strong black color through Maillared browning reaction. It has been reported that some chemically deglycosylated and transformed saponins are obtained from black ginseng as artifacts produced during intensive steaming. They have been known to be ginsenosides Rg3, Rg4, Rg5, Rg6, Rh1, Rh2, Rh4, Rk1 and Rk3, quite different from those of red ginseng, among which ginsenosides Rg3, Rg5 and Rk1 are considered to be major components. And also, black ginseng has been recently found to demonstrate anticancer, recovery from learning and memory damages, hypontensive, antidiabetic, antiobesitic, tonic and antiatopic activities, together with antioxidative and exercise performance improving activities, exhibiting their effects to be a little bit stronger than those of red ginseng. These findings suggest that black ginsng might play an important role in the development of promising functional foods and drugs from the viewpoint of the chemical composition and biological activities of black ginseng with a distinction from those of white and red ginsengs. In this review, the authors will survey and evaluate further functions of black ginseng with a focus on its physicochemical properties and biological activities.