• Title/Summary/Keyword: biological communities

Search Result 423, Processing Time 0.025 seconds

A Brief Review of Approaches Using Planktonic Organisms to Assess Marine Ecosystem Health (부유생물을 이용한 해양생태계 건강성 평가)

  • Kim, Young-Ok;Choi, Hyun-Woo;Jang, Min-Chul;Jang, Pung-Kuk;Lee, Won-Je;Shin, Kyoung-Soon;Jang, Man
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.327-337
    • /
    • 2007
  • Plankton communities have close relationships with environmental changes in water columns. Thus, the use of plankton as a biological tool for assessing the marine ecosystem health may be effective. Major issue regarding coastal pollution has been usually recognized as phytoplankton blooms or red tides caused by the eutrophication, an increase in concentration of inorganic nutrients such as nitrogen and phosphorus. However, in order to understand the effects of the overall pollution on marine ecosystem, the organic pollutants as well as the inorganic nutrients should be also considered. For understanding the effects of the organic pollution, among the planktonic organisms, heterotrophic bacteria, heterotrophic flagellates and ciliates should be investigated. Generally, there are three approaches for assessing the marine ecosystem health using the plankton taxa or plankton communities. The first one is a community-based approach such as diversity index and chlorophyll a concentration which are common in analysis of the plankton communities. The second is an indiviual-based approach which is to monitor the pollution indicative species. This approach needs one's ability to identify the plankton to species level. The last approach is a bioassay of toxicity, which can be applied to the plankton. A pilot study in Masan Bay was conducted to assess the effects of the inorganic and organic pollution. In this article, a new approach using plankton communities was tentatively presented as a biological tool for assessing the ecosystem health of Masan Bay.

The Vegetational Characteristics of Bongamsa Forest Genetic Resources Reserve Area in Mt. Heuyang (희양산 봉암사 산림유전자원보호구역 산림군락구조 특성)

  • Lee, Ho-Young;Oh, Choong-Hyeon;Choi, Song-Hyun;Lee, Soo-Dong
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.3
    • /
    • pp.382-393
    • /
    • 2012
  • The purpose of this study was to research the vegetation structure of the Bongamsa Forest Genetic Resourses Resreve Area in Mt. Heuyang, Mungyeong, Gyeongsangbuk-do. For doing this, ninety-two plots($100m^2/plot$) were set up and investigated, and then Classification analysis and Ordination analysis were carried out. As a result, the vegetation of this area is divided to nine communities; Quercus mongolica community, Quercus variabilis community, Pinus densiflora community, Pinus densiflora-Quercus serrata community, Pinus densiflora-Quercus mongolica community, Quercus serrata community, Decideous broad leaf community, Pinus koraiensis community, Larix kaempferi community. To compare between the communities, statistical analyses were conducted with topographical condition and the results of the vegetational investigation of each community. In altitude, slope, the number of species, the number of individuals in canopy and the number of individuals of understory layer, the mean averages among the communities were different in statistically significance. Then we analysed the vegetation community structure with Importance Percentage of each stratum. The oak tree communities were expected to keep or expand the actual communities because oak trees are spread widely in canopy and understory layers. But the pine tree dominant communities were expected to be succeeded to oak tree communities in the future because of the wide expansion of oak trees.

Long-term Environmental Changes and the Interpretations from a Marine Benthic Ecologist's Perspective (I) - Physical Environment

  • Yoo Jae-Won;Hong Jae-Sang;Lee Jae June
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.199-209
    • /
    • 1999
  • Before investigating the long-term variations in macrobenthic communities sampled in the Chokchon macrotidal flat in Inchon, Korea, from 1989 to 1996, we need to understand how environmental factors in the area vary. As potential governing agents of tidal flat communities, abiotic factors such as mean sea level, seawater, air temperature, and precipitation were considered. Data for these factors were collected at equal intervals from 1976 or 1980 to 1996, and were analyzed using a decomposition method. In this analysis, all the above variables showed strong seasonal nature, and yielded a significant trend and cyclical variation. Positive trends were seen in the seawater and air temperatures, and based upon this relationship, it was found that the biological sampling period of our program has been carried out during warmer periods in succession. This paper puts forth some hypotheses concerning the response of tidal flat macrobenthos communities to the changing environment including mild winters in succession.

  • PDF

Effect of Soil Factors on Vegetation Values of Salt Marsh Plant Communities: Multiple Regression Model

  • Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook;Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.361-364
    • /
    • 2006
  • The objective of the current study was to characterize and apply multiple regression model relating to vegetation values of the plant species over salt marshes. For each salt marsh community, vegetation and soil variables were investigated in the western coast and the southern coast in South Korea. Osmotic potential of soil and $Cl^-$ content of soil as independent variable had positive and negative influences on vegetation values. Multiple regression model showed that vegetation values of 14 coastal plant communities were determined by pH of soil, osmotic potential of soil and sand content. The multiple regression equation may be applied to the explanation of distribution and abundance of plant communities with exiting ordination plots.

Observation and Evaluation of Zooplankton Community Characteristics in the Petite Ponds (Dumbeong) for Irrigation: A Case Study in Goseong Region of South Korea (남부지역 소형 관개용 못들에서의(둠벙) 동물플랑크톤 군집특성 조사 및 평가)

  • Kim, Hang-Ah;Choi, Jong-Yoon;Kim, Seong-Gi;Do, Yuno;Joo, Gea-Jae;Kim, Dong-Kyun;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.490-498
    • /
    • 2012
  • This study demonstrates the investigation of zooplankton communities (e.g. rotifers, cladocerans and copepods) and environmentally related driving factors (e.g. elevation, area size, water depth, types of dike construction, and bottom substrates). We hypothesized that zooplankton community structure and composition would be influenced by ambient driving forces in different scales of the irrigation ponds (Dumbeong). A total of 66 zooplankton species/groups (56 rotifers, 9 cladocerans, 1 copepods) were found and identified at 45 Dumbeong of Goseong region (i.e. Goseong-gun) in 2011. The rotifers occupied 84.9% of the total zooplankton abundance. We could categorize a clear separation of zooplankton communities into 4 different patterns based on cluster analysis. Zooplankton diversities in Dumbeongs were lower than those in natural ponds or wetlands. In addition, community structure of zooplankton was also simpler and had a broken stick distribution based on SHE analysis. Species composition in each Dumbeong was not significantly discriminated each other. The result of canonical correspondence analysis (CCA) pinpointed that significant influential variables upon zooplankton community were dissolved oxygen percent saturation, pH, and Dumbeong's material. This study indicated that morphological type of the Dumbeong and its water quality could determine the community structure of zooplankton. Furthermore, the connectivity between ambient habitats and materials could be necessary to be rigorously considered in respect to producing the Dumbeongs to subsidize alternative habitats for wetland ecosystem in freshwater landscape.

The Importance of Weathered Crude Oil as a Source of Hydrocarbonoclastic Microorganisms in Contaminated Seawater

  • Sheppard, Petra J.;Simons, Keryn L.;Kadali, Krishna K.;Patil, Sayali S.;Ball, Andrew S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1185-1192
    • /
    • 2012
  • This study investigated the hydrocarbonoclastic microbial community present on weathered crude oil and their ability to degrade weathered oil in seawater obtained from the Gulf St. Vincent (SA, Australia). Examination of the native seawater communities capable of utilizing hydrocarbon as the sole carbon source identified a maximum recovery of just $6.6{\times}10^1\;CFU/ml$, with these values dramatically increased in the weathered oil, reaching $4.1{\times}10^4\;CFU/ml$. The weathered oil (dominated by > $C_{30}$ fractions; $750,000{\pm}150,000mg/l$) was subject to an 8 week laboratory-based degradation microcosm study. By day 56, the natural inoculums degraded the soluble hydrocarbons (initial concentrations $3,400{\pm}700mg/l$ and $1,700{\pm}340mg/l$ for the control and seawater, respectively) to below detectable levels, and biodegradation of the residual oil reached 62% ($254,000{\pm}40,000mg/l$) and 66% ($285,000{\pm}45,000mg/l$) in the control and seawater sources, respectively. In addition, the residual oil gas chromatogram profiles changed with the presence of short and intermediate hydrocarbon chains. 16S rDNA DGGE sequence analysis revealed species affiliated with the genera Roseobacter, Alteromonas, Yeosuana aromativorans, and Pseudomonas, renowned oil-degrading organisms previously thought to be associated with the environment where the oil contaminated rather than also being present in the contaminating oil. This study highlights the importance of microbiological techniques for isolation and characterisation, coupled with molecular techniques for identification, in understanding the role and function of native oil communities.

Structure of Bacterial Communities in Biological Nitrogen Removal System (Biological Nitrogen Removal System의 세균 군집 분석)

  • Kim, Kyung-Mi;Lee, Sang-Ill;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.26-33
    • /
    • 2006
  • To understand the efficient process of biological nitrogen removal (BNR) system, the structure of bacterial communities in nitrification reactors was analyzed using PCR and terminal restriction fragment length poly morphism (I-RFLP) methods. In this study, we used an advanced treatment system with plotting media, Nutrient Removal Laboratory system, or the rumination type sequencing batch reactor (SBR) system. The terminal restriction fragments of ammonia-oxidizing bacteria (AOB) and other $\beta-proteobacteria$ were observed in all of three BNR systems. The nucleotide sequence analysis of terminal restriction fragments showed that Nitrosomonas and Nitrosolobus were major populations of AOB in SBR system, whereas uncultured $\beta-proteobacteria$ and Cardococcus australiensis were the predominant groups in other two BNR systems. Also the SBR system may be more efficient to enrich AOB. These results indicate that the different structure of bacterial community may be developed depending on the wastewater treatment systems, although the same influent is used.

Soil salinity shifts the community structure and diversity of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars

  • Walitang, Denver I.;Ahmed, Shamim;Jeon, Sunyoung;Pyo, Chaeeun;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.244-244
    • /
    • 2017
  • Soil salinity due to accumulation of salts particularly sodium chloride affects agricultural lands and their vegetation. Generally, rice is a moderately sensitive plant with some cultivars with varying tolerance to salinity. Though there are physiological differences between salt-sensitive and salt-tolerant rice cultivars, both are still affected especially during high salinity and prolonged exposure. This also ultimately affects their indigenous bacterial endophytes particularly those that inhabit the rice seed endosphere. This study investigates the dynamic structure of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars grown in different levels of soil salinity. Endophytic bacterial diversity was studied Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Results revealed a very interesting pattern of diversity and shifts in community structure of bacterial endophytes in the rice seeds. There is a general decrease in diversity for the salt-sensitive rice cultivar, IR29 as soil salinity increases. For the salt-tolerant cultivars, IC32 and IC37, diversity interestingly increased at moderate salinity then decreased at high soil salinity. The patterns of community structure is also strikingly different for the salt-sensitive and salt-tolerant rice cultivars. IR29 has a more even distribution of abundance, but under soil salinity, the community shifted where Curtobacterium, Pantoea, Flavobacterium and Microbacterium become the more dominant bacterial communities. For IC32 and IC37, the dominant bacterial groups under normal stress conditions were also the dominant bacterial groups during salt stress conditions. Their seed bacterial community is dominated by endophytes belonging to Microbacterium, Flavobacterium, Pantoea, Kosakonia and Enterobacter. Stenotrophomonas and Xanthomonas have not changed in terms of abundance under different salinity stress level in the salt-sensitive and salt-tolerant rice cultivars. This study showed that soil salinity greatly influenced the seed bacterial communities of rice seeds irrespective of their physiological tolerance to salinity.

  • PDF

Distribution Changes of Freshwater Microalgae Community in the Nakdonggang River, Korea (낙동강 담수 미세조류 군집 분포 변화)

  • Suk Min Yun;Dae Ryul Kwon;Mirye Park;Chang Soo Lee;Sang Deuk Lee
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.181-193
    • /
    • 2023
  • Distribution changes in microalgae communities were studied in the Nakdonggang River at two sampling stations (St.1 Gyeongcheongyo Bridge (GB) and St.2 Daedong Wharf (DW)) at monthly intervals from January 2021 to November 2021. A total of 83 taxa included 82 species, 1 forma, belonging to 49 genera, 32 families, 21 orders, and 8 classes. The most important groups were Bacillariophyta and Chlorophyta. The number of species ranged from 5 to 24 in GB, and from 9 to 21 taxa in DW. The contribution of Bacillariophyta to the total species richness was the highest during all survey periods, and Chlorophyta yielded the next highest value in the study area. The dominant taxa were Aulacoseira ambigua, A. ambigua f. japonica, and Ulnaria acus in this study. Cluster analysis and non-metric multidimensional scaling (nMDS) analysis based on Bray- Curtis similarity identified 4 major groups, which corresponded to microalgae assemblages and their characteristic species. Correlation was analyzed through the CCA analysis. It was found that there was a correlation between the microalgae and environmental factors. It was revealed that the divided groups were distinguished because of the differences by the survey period. Therefore, seasonal change was judged as a major factor affecting the distribution of microalgae communities.

Phytosociological Study on the Vegetation of Sand Dune in Shindoori Seashore (신두리 해안 사구지 식생의 식물사회학적 연구)

  • Ahn, Young-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.6
    • /
    • pp.29-40
    • /
    • 2003
  • Shindoori dune, about 2,000,000$m^2$ in area, is located in the west of the middle area in Korea. Around the sand dune, many diagnostic plants and animals are populated, so it is considered a very important ecosystematic area. This study was carried out to establish for conservation and restoration in Shindoori dune. Our surveys have been accomplished from October, 2002 to September, 2003. Plant communities formed around the sand dune in Shindoori were divided into several patterns and analysed. They have been divided into 9 communities. Community A : Carex pumila community, B : Carex kobomugi community, C : Elymus moWs community, D : Imperata cylindrica var. koenigii community, E: Rosa rugosa community, F: Ischaemum anthephoroides community, G: Vitex rotundifolia community, H : Lathyrus japonica community, I : Oenothera biennis community. The flora surveyed in these communities was constituted of 19 families, 44 genera, 8 varieties, and 40 species. Wild plants such as Calystegia soldanella, Artemisia capillaris, Avena fatua, Mertensia asiatica, Glehnia littoralis and Zoysia sinica were mostly light loving plants and higher resistant plants against the salty wind. Our result from the ranking all surveyed areas by the Bray-Curtis ordination method was very similar to the results from phytosocialogical table work.