• Title/Summary/Keyword: biological availability

Search Result 204, Processing Time 0.029 seconds

Feasibility of Phosphorus Recovery from Biological Livestock Wastewater Treatment Plant (생물학적 축산분뇨처리시설에서 인 회수의 가능성 평가)

  • Ahn, Johwan;Kim, Jangho;Min, Sungjae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.4
    • /
    • pp.343-348
    • /
    • 2016
  • A chemical sequencing batch reactor was operated to test the feasibility of nutrient recovery from a biological livestock wastewater treatment plant. Both phosphate and ammonia could be successfully recovered as magnesium ammonium phosphate (MAP) crystals. The contents of TP and TN in the recovered MAP crystals were 26.2% and 4.0%, respectively. Zn, Cr and Ti were identified in the crystals, but the contents remained below the Korean standard for an organic fertilizer. Chemical analyses confirmed that the MAP crystals could be useful phosphate fertilizers. On the other hand, the results of physical analyses using an X-ray diffractometer and an energy dispersive X-ray spectrometer strongly suggested that crystalline materials like magnesium potassium phosphate (KMP) and hydroxyapatite (HAP) were also formed during the MAP crystallization, depending on the availability of K+ and Ca2+.

Effects of Transferrin on Enhancing Biological Availability of Iron

  • Park, In-wook;Kim, Yun-Ji;Seong, i-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.248-250
    • /
    • 1998
  • In this study, transferrin which is an iron-carrying glycoprotein in plasma was evaluted for its iron binding capacities(TIBC), iron solubilizing abilities, and enhancing effect of biological availbability of iron. Results of TIBC showed that 1 mg of transferrin could blind 1.28$\mu\textrm{g}$ of iron indicating that one molecule of transferrin can bind about 2 molecules of iron. Also, solubility of iorn (7.5$\mu\textrm{g}$ Fe/ml) was significantly incresed to 96.0% with addition of transferrin (5mg/ml) .When FeCl3(80$\mu\textrm{g}$ Fe/ml) was injected to iron-deficient rats by intestinal segment in situ technique, 18.4% of injected iron was absorbed wherease 48.49 and 48.76% of injected iron was absorbed with addition of 10 and 20 mg transferrin/ml , respectively.

  • PDF

DNA chip technology

  • Lee, Sang-Yeop;Yun, Seong-Ho;Choe, Jong-Gil;Im, Geun-Bae
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.119-122
    • /
    • 2000
  • Biological science is being revolutionized by the availability of much sequence information from many genome project With the advanced technology at hand, main trend in biological research is rapidly changing from a structural DNA analysis to understanding cellular function of the DNA sequences. Combined with mechanics, computer, bioinformatics and other advanced technologies, DNA chip technology provides numerous applications because of its robustness, accuracy, and automation. DNA chip is expected to become an indispensable tool in fields of biology, biotechnology, drug discovery, and other application areas. DNA chip can be used for mutation and polymorphism detection, gene expression monitoring and phenotypic analysis as well. If DNA chip is used for the development of pharmaceutical products, it can considerably reduce the cost and time for the entire process of drug discovery and development, and can also contribute in developing personal drugs.

  • PDF

Enhanced Biomass Productivity of Freshwater microalga, Parachlorella kessleri for Fixation of Atmospheric CO2 Using Optimal Culture Conditions (최적 배양 조건을 이용한 CO2 제거 목적의 담수 미세조류 Parachlorella kessleri의 바이오매스 생산성 향상)

  • Z-Hun Kim;Sun Woo Hong;Jinu Kim;Byungrak Son;Mi-Kyung Kim;Yong Hwan Kim;Jin Hyun Seol;Su-Hwan Cheon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2024
  • This study attempted to improve the growth of the freshwater microalgae, Parachlorella kessleri, through the sequential optimization of culture conditions. This attempt aimed to enhance the microalgae's ability to fixate atmospheric CO2. Culture temperature and light intensity appropriate for microalgal growth were scanned using a high-throughput photobioreactor system. The supplied air flow rate varied from 0.05 to 0.3 vvm, and its effect on the growth rate of P. kessleri was determined. Next, sodium phosphate buffer was added to the culture medium (BG11) to enhance CO2 fixation by increasing the availability of CO2(HCO3-) in the culture medium. The results indicated that optimal culture temperature and light intensity were 20℃-25℃ and 300 μE/m2/s, respectively. Growth rates of P. kessleri under various air flow rates highly depended on the increase of the culture's flow rate and pH which determines CO2 availability. Adding sodium phosphate buffer to BG11 to maintain a constant neutral pH (7.0) improved microalgal growth compared to control conditions (BG11 without sodium phosphate). These results indicate that the CO2 fixation rate in the air could be enhanced via the sequential optimization of microalgal culture conditions.

Growth dynamics of the seagrass, Zostera marina in Jindong Bay on the southern coast of Korea

  • Kim, Young-Kyun;Kim, Jong-Hyeob;Kim, Seung-Hyeon;Kim, Jae-Woo;Park, Sang-Rul;Lee, Kun-Seop
    • ALGAE
    • /
    • v.27 no.3
    • /
    • pp.215-224
    • /
    • 2012
  • Growth dynamics of the seagrass, Zostera marina were examined at the two stations (Myungju and Dagu) in Jindong Bay on the southern coast of Korea. Eelgrass leaf productivities, underwater irradiance, water temperature, dissolved inorganic nitrogen (DIN) in water column and sediments, and tissue carbon (C) and nitrogen (N) content were monitored monthly from March 2002 to January 2004. Underwater irradiance fluctuated highly without a clear seasonal trend, whereas water temperature showed a distinct seasonal trend at both study stations. Water column DIN concentrations were usually less than $5{\mu}M$ at both study sites. Sediment pore water $NH_4{^+}$ and $NO_3{^-}+NO_2{^-}$ concentrations were higher at the Myungju site than at the Dagu site. Eelgrass leaf productivity at both study sites exhibited a distinct seasonality, increasing during spring and decreasing during summer. Seasonal variation of eelgrass productivity was not consistent with seasonal patterns of underwater irradiance, or water temperature. Eelgrass tissue C and N content at both study sites also showed significant seasonal variations. Relationships between tissue C and N content and leaf productivities exhibited usually negative correlations at both study sites. These negative correlations implied that the growth of Z. marina at the study sites was probably limited by C and N supplies during the high growth periods.

Global warming and biodiversity model projections

  • Ihm, Byung-Sun;Lee, Jeom-Sook;Kim, Jong-Wook
    • Journal of Ecology and Environment
    • /
    • v.35 no.3
    • /
    • pp.157-166
    • /
    • 2012
  • Many models intending to explain the latitudinal gradient of increasing species diversity from the poles to the equator are presented, which are a formalisation of the species-energy hypothesis. The model predictions are consistent with patterns of increasing species number with increasing mean air or water temperatures for plants and animals. An increase in species richness is also correlated with net primary production or the Normalised Difference Vegetation Index. This implies that increased availability of resources favours increased diversity capacity. The explanatory variables included in the biodiversity prediction models represent measures of water, energy, water-energy, habitat, history/evolution and biological responses. Water variables tend to be the best predictors when the geographic scope of the data is restricted to tropical and subtropical areas, whereas water-energy variables dominate when colder areas are included. In major models, about 20-35% of species in the various global regions (European, Africa, etc.) will disappear from each grid cell by 2050 and >50% could be vulnerable or threatened by 2080. This study provides good explanations for predictive models and future changes in biodiversity depending on various scenarios.

A Revised Assay for Monitoring Autophagic Flux in Arabidopsis thaliana Reveals Involvement of AUTOPHAGY-RELATED9 in Autophagy

  • Shin, Kwang Deok;Lee, Han Nim;Chung, Taijoon
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.399-405
    • /
    • 2014
  • Autophagy targets cytoplasmic cargo to a lytic compartment for degradation. Autophagy-related (Atg) proteins, including the transmembrane protein Atg9, are involved in different steps of autophagy in yeast and mammalian cells. Functional classification of core Atg proteins in plants has not been clearly confirmed, partly because of the limited availability of reliable assays for monitoring autophagic flux. By using proUBQ10-GFP-ATG8a as an autophagic marker, we showed that autophagic flux is reduced but not completely compromised in Arabidopsis thaliana atg9 mutants. In contrast, we confirmed full inhibition of auto-phagic flux in atg7 and that the difference in autophagy was consistent with the differences in mutant phenotypes such as hypersensitivity to nutrient stress and selective autophagy. Autophagic flux is also reduced by an inhibitor of phosphatidylinositol kinase. Our data indicated that atg9 is phenotypically distinct from atg7 and atg2 in Arabidopsis, and we proposed that ATG9 and phosphatidylinositol kinase activity contribute to efficient autophagy in Arabidopsis.

Rumen Degradability and Small Intestinal Digestibility of the Amino Acids in Four Protein Supplements

  • Wang, Y.;Jin, L.;Wen, Q.N.;Kopparapu, N.K.;Liu, J.;Liu, X.L.;Zhang, Y.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.2
    • /
    • pp.241-249
    • /
    • 2016
  • The supplementation of livestock feed with animal protein is a present cause for public concern, and plant protein shortages have become increasingly prominent in China. This conflict may be resolved by fully utilizing currently available sources of plant protein. We estimated the rumen degradability and the small intestinal digestibility of the amino acids (AA) in rapeseed meal (RSM), soybean meal (SBM), sunflower seed meal (SFM) and sesame meal (SSM) using the mobile nylon bag method to determine the absorbable AA content of these protein supplements as a guide towards dietary formulations for the dairy industry. Overall, this study aimed to utilize protein supplements effectively to guide dietary formulations to increase milk yield and save plant protein resources. To this end, we studied four cows with a permanent rumen fistula and duodenal T-shape fistula in a $4{\times}4$ Latin square experimental design. The results showed that the total small intestine absorbable amino acids and small intestine absorbable essential amino acids were higher in the SBM (26.34% and 13.11% dry matter [DM], respectively) than in the SFM (13.97% and 6.89% DM, respectively). The small intestine absorbable Lys contents of the SFM, SSM, RSM and SBM were 0.86%, 0.88%, 1.43%, and 2.12% (DM basis), respectively, and the absorbable Met contents of these meals were 0.28%, 1.03%, 0.52%, and 0.47% (DM basis), respectively. Among the examined food sources, the milk protein score of the SBM (0.181) was highest followed by those of the RSM (0.136), SSM (0.108) and SFM (0.106). The absorbable amino acid contents of the protein supplements accurately reflected protein availability, which is an important indicator of the balance of feed formulation. Therefore, a database detailing the absorbable AA should be established.

Improving Production of Value-added Materials by a Detoxification of Plant Derivatives (식물 유래 물질 해독화를 통한 고부가가치 소재 생산)

  • Sungmin Hwang;Jung Up Park;Bohyun Yun;Ji-Won Park;WonWoo Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.12-12
    • /
    • 2023
  • Plant biomass, or lignocellulose, is one of the most abundant natural resources on earth. Lignocellulosic biomass, such as agricultural and forestry residue, serves as a renewable feedstock for microbial cell factories due to its low price and abundant availability. However, the recalcitrance of lignocellulosic biomass requires a pretreatment process prior to microbial fermentation, from which fermentable sugars including xylose and glucose are generated along with various inhibitory compounds. The presence of furan derivatives, such as 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde (furfural), hampers the microbial conversion of lignocellulosic biomass into value-added commodities. In this study, furfural tolerance was improved by investigating the detoxification mechanism in non-model yeast. The genes encoding aldehyde dehydrogenases were overexpressed to enhance furfural tolerance and resulted in improving cell growth and lipid production that can be converted into biofuel. Taken together, this approach contributes to the understanding of the reducing toxicity mechanism of furfural by the aldehyde dehydrogenases and provides a promising strategy that the use of microorganism as an industrial workhorse to treat efficiently lignocellulosic biomass as sustainable plant derivatives.

  • PDF

Management of Korean Biological Resources for Access Regulation and Benefit-sharing (접근규제와 이익공유를 위한 효율적인 생물유전자원 관리 방안)

  • 김기대;오경희;이병윤;김말희;김태규;이은영;노환춘;이민효;이덕길
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.2
    • /
    • pp.259-264
    • /
    • 2004
  • Convention on Biological Diversity has authorized national sovereignty over biological resources so that legislative framework should be established. In biological resources management, the access to biological resources and the benefit sharing arising out of their utilization are two most important steps. Bonn guidelines adopted by the 6th COP of the Convention on Biological Diversity contain MAT (Mutually Agreed Terms) and PIC (Prior Informed Consent) indispensable to implement the access and benefit-sharing process. MAT is contractual agreement between provider countries and use entities while PIC is a specific measure associated with consent prior to access to biological resources. Moreover, the guidelines include the responsibilities of national focal point and competent national authority, incentives and so on. Our laws related to access to biological resources have no items on benefit-sharing and intellectual property rights. The role of the competent national authority is very important to coordinate the organization controlling information availability, opening to the public, and intellectual property rights with other stakeholders. But, the national regulations must not interfere with academic studies on biological diversity and disobey the two objectives of the Convention on Biological Diversity, the conservation of biological diversity and its sustainable use.