• Title/Summary/Keyword: bioleaching

Search Result 49, Processing Time 0.057 seconds

Anti-tumor Effects and Apoptosis Induction by Realgar Bioleaching Solution in Sarcoma-180 Cells in Vitro and Transplanted Tumors in Mice in Vivo

  • Xie, Qin-Jian;Cao, Xin-Li;Bai, Lu;Wu, Zheng-Rong;Ma, Ying-Ping;Li, Hong-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2883-2888
    • /
    • 2014
  • Background: Realgar which contains arsenic components has been used in traditional Chinese medicine (TCM) as an anticancer drug. However, neither Realgar nor its formula are soluble in water. As a result, high dose of Realgar has to be administered to achieve an effective blood medicine concentration, and this is associated with adverse side effects. The objective of the present study was to increase the solubility of a formula using hydrometallurgy technology as well as investigating its effects on in vitro and in vivo cell proliferation and apoptosis in Sarcoma-180 cell line. Materials and Methods: Antiproliferative activity of Realgar Bioleaching Solution (RBS) was evaluated by MTT assay. Further, effects of RBS on cell proliferation and apoptosis were studied using flow cytometry and transmission electron microscopy. Kunming mice were administered RBS in vivo, where arsenic specifically targeted solid tumors. Results: The results indicated that RBS extract potently inhibited the tumor growth of Sarcoma-180 cell line in a dose-dependent manner. Flow cytometry and transmission electron microscopy further indicated that RBS significantly induced cell apoptosis through the inhibition of cell cycle pathway in a dose-dependent manner. Further, on RBS administration to mice, arsenic was specifically targeted to solid tumor.s Conclusions: RBS could substitute for traditional Realgar or its formula to work as a potent tool in cancer treatment.

A Study on the Bioleaching of Cobalt and Copper from Cobalt Concentrate by Aspergillus niger strains (Aspergillus niger 균주를 이용(利用)한 코발트 정광(精鑛)으로부터 코발트 및 구리의 미생물(微生物) 침출(浸出) 연구(硏究))

  • Ahn, Hyo-Jin;Ahn, Jae-Woo;Bang, Duk-Ki;Kim, Meong-Woon
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.44-52
    • /
    • 2013
  • Bioleaching behavior of metal ions for recovery of cobalt and copper from cobalt concentrate was investigated by employing three Aspergillus niger strains. Various factors, such as organic acid generation with fungi type, pH of the culture and pulp density were studied. The results showed that the best fungi for organic acid(citric acid and oxalic acid) generation was A. niger KCTC 6144 using Malt Extract Broth culture at initial pH 3.5. But A. niger KCTC 6985 was more effective for the leaching of cobalt and copper from cobalt concentrate. Our results showed that 82% cobalt and 98% copper was dissolved by A. niger KCTC 6985 at 10g/L pulp density, at pH 3.5 and $24^{\circ}C$ after 15 days incubation.

Characterization of Heavy Metals Bioleaching from Fly Ash by a Sulfur-Oxidizing Bacterium Thiobacillus thiooxidans: Effect of Solid Concentrations (황산화세균 Thiobacillus thiooxidans에 의한 fly ash의 중금속 제거 특성:고형물 농도의 영향)

  • 조경숙;문희선;이인숙
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 1999
  • The bioleaching of heavy metals from fly ash was performed by Thiobacillus thiooxidans MET isolated from the enrichment culture of an anaerobically digested sludge. The effect of solid concentrations on the efficiency of metal leaching was studied in shaken flasks. In the range of solid concentrations 20 g.L­$^1$to 100 g.L­$^1$T. thiooxidans MET oxidized S$^{0}$ to sulfate without any lag period. The final pH of slurry solution was decreased to below pH 1, and the final oxide-redox potential (ORP) was increased to over 420 mV in the solid concentrations below 100 g.L­$^1$. However, the initial lag period of 4 to 8 days was required to obtain the pH reduction and ORP increase of the slurry solutions in the range of solid concentrations 150 g.L­$^1$to 300 g.L­$^1$. The sulfur oxidation rate of T. thiooxidans MET in 20~100 g.L­$^1$solid concentrations was 0.70~0.75 g-S.L­$^1$ㆍ d­$^1$, but its sulfur oxidation activity was remarkably inhibited with increasing solid concentration over 150 g.L­$^1$. Increasing fly ash solids concentration in the range of solids concentration 20 g.L­$^1$ to 200 g.L­$^1$decreased the removal efficiency of Zn, Cu, Mn, Cr and Pb. The solubilization of heavy metals from fly ash was strongly correlated with the pH value of slurry solution. When the pH of slurry solution was reduced to 3, the solubilization process of Zn, Cu and Mn started, and their solubilization efficiency of Zn, Cu and Mn was progressively increased below pH 2. However, the solubilization process of Cr and Pb started at pH 2.5 and 2.0, respectively.

  • PDF

Recovery of Cu and Sn from the Bioleaching Solution of Electronic Scrap (전자(電子)스크랩의 미생물(微生物) 침출액(浸出液)으로부터 구리 및 주석의 회수(回收)에 관한 연구(硏究))

  • Ahn, Jae-Woo;Kim, Meong-Woon;Jeong, Jin-Ki;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.41-47
    • /
    • 2006
  • A study for recovering of copper and lead from electronic scraps has been carried out using a combination of bioleaching and solvent extraction. It was found that the citric acid generated by Aspergillus niger could be an imporant leaching agent acting in the solubilization of copper, iron, lead and tin from the electronic scrap. Copper could be selectively extracted by 10% LIX84 from the leaching solution and it recoved 99.9% of metallic copper by electrowinning process. Tin and iron were extracted from the remaining solution by 10% Alamine336 and stripped by NaCl solution. Finally, tin could be recovered as a metallic precipitates from the mixed solution of tin and iron by cementation with iron powder.

Bioleaching of valuable metals from electronic scrap using fungi(Aspergillus niger) as a microorganism (곰팡이균(Aspergillus niger)을 이용(利用)한 전자스크랩중 유가금속(有價金屬)의 미생물(微生物) 침출(浸出) 연구(硏究))

  • Ahn, Jae-Woo;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin
    • Resources Recycling
    • /
    • v.14 no.5 s.67
    • /
    • pp.24-31
    • /
    • 2005
  • In order to recover valuable metals from fine-grained electronic waste, bioleaching of Cu, Zn, Al, Co, Ni, Fe, Sn and Pb were carried out using Aspergillus niger as a leaching microorganism in a shaking flask. Aspergillus niger was able to grow in the presence of electronic scrap. The formation of organic acids(citric and oxalic acid) from Aspergillus niger caused the mobilization of metals from waste electronic scrap. In a preliminary study, in order to obtain the data on the leaching of Cu, Zn, Al, Fe, Co and Ni from electronic scrap, chemical leaching using organic acid(Citric acid and Oxalic acid) was accomplished. At the electronic scrap concentration of 50 g/L, Aspergillus niger were able to leach more than 95% of the available Cu, Co. But Al, Zn, Pb and Sn were leached about 15-35%. Ni and Fe were detected in the leachate less than 10%.

A Study on the Enhanced Cleanup of Mine Tailings Using Thiobacillus ferrooxidans (Thiobacillus ferrooxidans를 이용한 광미 정화의 효율 증진에 관한 연구)

  • 이지희;최상일
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.120-125
    • /
    • 1999
  • This study was carried out to enhance the efficiency of bioleaching of heavy metals. copper and zinc from the soil samples obtained from mine tailings in Cho-il Mine located in Dan-Yang, Choong-Buk. The effects of medium (9 K) composition on the leaching efficiency were investigated by changing concentrations of the dominant components. phosphorus, nitrogen source. and energy source which are the most important factors governing the growth and multiplication of microorganism. The results of the bioleaching test at different phosphorus concentrations of medium, 0 mM. 3.0 mM, and 6.0 mM showed that leaching efficiency for zinc and copper was 98.8% and 47.5% respectively at 0 mM and decreased at higher phosphorus concentration 6.0 mM. In the bioleaching test of zinc and copper at 0 mM, 45 mM, and 90 mM nitrogen concentrations, the Highest efficiency of 85% and 46.4% was obtained for zinc and cooper respectively at 45 mM and the lower efficiency observed for 90mM nitrogen addition. The zinc and copper leaching with variation of energy source dosage showed the highest removal efficiency, 93% for zinc in the absence of energy source and 46.4% for copper at 160mM energy source.

  • PDF

Bioleaching of electronic scrap using Aspergillus niger (Aspergillusniger를 이용한 전자스크랩의 미생물 침출 연구)

  • Ahn, Jae-Woo;Jeong, Jin-Ki;Lee, Jae-Chun;Kim, Dong-Gin;Ahn, Jong-Gwan
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.05a
    • /
    • pp.214-223
    • /
    • 2005
  • In order to recover valuable metals from fine-grained electronic waste, bioleaching of Cu, Zn, Al, Co, Ni, Sn and Pb were carried out using Aspergillus niger as a leaching microorganism in a shaking flask. Aspergillus niger was able to grow in tile presence of electronic scrap. The formation of organic acids(citric and oxalic acid) from Aspergillus niger caused the mobilization of metals from waste electronic scrap. In a preliminary study, in order to obtain the data on the leaching of Cu, Zn, Al, Co and Ni, the metal leaching behaviours were accomplished using Organic acid(Citric acid and Oxalic acid) instead of Aspergillus niger. At the electronic scrap concentration of 50g/L, Aspergillus niger were able to leach more than 95% of the available Cu, Co. But Al, Zn, Pband Sn were able to leach about 15-35%. Ni and Fe were detected in the leachate less than 10%.

  • PDF

The Characteristic of Selective Attachment and Bioleaching for Pyrite Using Indigenous Acidophilic Bacteria at $42^{\circ}C$ ($42^{\circ}C$에서 토착호산성박테리아의 황철석 표면에 대한 선택적 부착과 용출 특성)

  • Park, Cheon-Young;Kim, Soon-Oh;Kim, Bong-Ju
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.109-121
    • /
    • 2010
  • The bioleaching experiment under $42^{\circ}C$ was effectively carried out to leach the more valuable element ions from the pyrite in the Gangyang mine waste. Bacteria can survive at this temperature, as indigenous acidophilic bacteria were collected in the Hatchobaru acidic hot spring, in Japan. To enhance the bacterial activity, yeast extract was added to the pyrite-leaching medium. The indigenous acidophilic bacteria appeared to be rod-shaped in the growth-medium which contained elemental sulfur and yeast extract. The rod-shaped bacteria ($0.7\times2.6\;{\mu}m$, $0.6\times7\;{\mu}m$, $0.8\times5\;{\mu}m$ and $0.7\times8.4\;{\mu}m$) were attached to the pyrite surface. The colonies of the rod-shaped bacteria were selectively attached to the surroundings of a hexagonal cavity and the inner wall of the hexagonal cavity, which developed on a pyrite surface. Filament-shaped bacteria ranging from $4.92\;{\mu}m$ to $10.0\;{\mu}m$ in length were subsequently attached to the surrounding cracks and inner wall of the cracks on the pyrite surface. In the XRD analysis, the intensity of (111), (311), (222) and (320) plane on the bacteria pyrite sample relatively decreased in plane on the control pyrite sample, whereas the intensity of (200), (210) and (211) increased in these samples. The microbiological leaching content of Fe ions was found to be 3.4 times higher than that of the chemical leaching content. As for the Zn, microbiological leaching content, it was 2 times higher than the chemical leaching content. The results of XRD analysis for the bioleaching of pyrite indicated that the indigenous acidophilic bacteria are selectively attacked on the pyrite specific plane. It is expected that the more valuable element ions can be leached out from the mine waste, if the temperature is increased in future bioleaching experiments.

Effect of Metal Ions on Iron Oxidation Rate of Thiobacillus ferrooxidans Used in a Bioleaching Process (Bioleaching에 사용되는 Thiobacillus ferrooxidans의 철산화 속도에 미치는 금속 이온의 영향)

  • 최문성;조경숙
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.54-60
    • /
    • 2001
  • The activity of microorganisms is an important factor that determines the efficiency of the bacterial recovery of precious metals from low-grade ore. Metal-leaching microorganisms must have a tolerance, within the concentration levels encountered to leached metals. In this study, the tolerance levels of Thiobacillus ferroxidans to the single and mixed metal ions systems, composed of $Zn^{2+}$, $Cu^{2+}$, $Ni^{2+}$, and $Cd^{2+}$ were investigated. When single metal ions of $Zn^{2+}$ (10~60 g/L), $Cu^{2+}$ (1~6 g/L), $Ni^{2+}$ (1~6 g/L), or $Cd^{2+}$ (1~6 g/L) were added to the growth medium of T. ferrooxidans, the iron oxidation rate of this bacterium was not significantly inhibited. The maximum inhibition percentage observed on the iron oxidation rate of T. ferrooxidans was approximately 50% in the medium supplemented with two or three mixed metal ions of $Cu^{2+}$, $Ni^{2+}$, and $Cd^{2+}$. However, when $Zn^{2+}$ was also added to the medium with the other metal ions, the inhibitory effect on the iron oxidation activity of T. ferroxidans was remarkably increased.

  • PDF