• Title/Summary/Keyword: biohydrogen purification

Search Result 4, Processing Time 0.02 seconds

Biohydrogen Generation and Purification Technologies for Carbon Net Zero (탄소중립형 바이오수소 생산 및 분리막기반 정제 기술 소개)

  • Hyo Won Kim
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.168-180
    • /
    • 2023
  • H2 generation from renewable sources is crucial for ensuring sustainable production of energy. One approach to achieve this goal is biohydrogen production by utilizing renewable resources such as biomass and microorganisms. In contrast to commercial methods, biohydrogen production needs ambient temperature and pressure, thereby requiring less energy and cost. Biohydrogen production can reduce greenhouse gas emissions, particularly the emission of carbon dioxide (CO2). However, it is also associated with significant challenges, including low hydrogen yields, hydrodynamic issues in bioreactors, and the need for H2 separation and purification methods to obtain high-purity H2. Various technologies have been developed for hydrogen separation and purification, including cryogenic distillation, pressure-swing adsorption, absorption, and membrane technology. This review addresses important experimental developments in dense polymeric membranes for biohydrogen purification.

Purification of Biohydrogen Produced From Palm Oil Mill Effluent Fermentation for Fuel Cell Application

  • Rohani, Rosiah;Chung, Ying Tao;Mohamad, Izzati Nadia
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.469-474
    • /
    • 2019
  • Fermentation of palm oil mill effluent (POME) produces biohydrogen in a mixture at a specific set condition. This research was conducted to purify the produced mixed biohydrogen via absorption and membrane techniques. Three different solvents, methyl ethanolamine (MEA), ammonia ($NH_3$) and potassium hydroxide (KOH) solutions, were used in absorption technique. The highest $H_2$ purity was found using 1M MEA solution with 5.0 ml/s feed mixed gas flow rate at 60 minutes absorption time. Meanwhile, the purified biohydrogen using a polysulfone membrane had the highest $H_2$ purity at 2~3 bar operating pressure. Upon testing with proton exchange membrane fuel cell (PEMFC), the highest current and power produced at 100% $H_2$ were 1.66 A and 8.1 W, while the lowest were produced at 50/50 vol% $H_2/CO_2$ (0.32 A and 0.49 W). These results proved that both purification techniques have significant potential for $H_2$ purification efficiency.

Methane Recovery and Carbon Dioxide Stripping by MEA Solution the Autocirculation Bubble Lift Column Reactor (내부순환식 기포탑 반응기 상에서 MEA (monoethanolamine) 용액에 의한 이산화탄소 분리 및 메탄회수)

  • Lee, In-Hwa;Kim, Sun-Yil;Park, Ju-Young
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • For the simultaneous methane recovery and $CO_2$-stripping, we have been developed dual vent auto circulation bubble lift column reactor, and evaluate optimum conditions for monoethanolamine (MEA) solutions as a $CO_2$ absorbent. At the 5 wt% MEA solution, we investigated the pH change during $CO_2$-stripping and absorption reaction, $CO_2$-stripping rate with reaction time, methane recovery efficiency for various inflow rates of air, $CO_2$-stripping rate for flow liquid over flow height, and $CO_2$-stripping dependency on the temperature of absolvent solutions. The suggested optimum conditions for $CO_2$ recovery with MEA in the dual vent auto circulation bubble lift column reactor were 40 mm over flow liquid height, 1.5 L/min of air inflow rate, and $25^{\circ}C$ of absorbent solution temperature.

Reforming of Hydrocarbon Fuel Using Water Jet Plasma (Water Jet 플라즈마를 이용한 탄화수소 연료 개질)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to develop water jet plasma reactor and investigate the optimal condition of the syngas production by reforming of hydrocarbon fuel. Fuel used was propane and plasma was generated by arc discharge on water jet surface. Discharge slipping over the water surface has a number of advantages such as a source of short-wave and UV radiation, and it can be used for biological and chemical purification of water. Parametric screening studies were conducted, in which there were the variations of power ($0.18{\sim}0.74$ kW), water jet flow rate($38.4{\sim}65.6$ mL/min), electrode gap($5{\sim}15$ mm) and treatment time($2{\sim}20$ min). When the variations were 0.4 kW, 53.9 mL/min, 10 mm and 20 min respectively, result of maximum $H_2$ concentration was 61.6%, intermediates concentration were 6.1% and propane conversion rate was 99.8%.