• Title/Summary/Keyword: biofeedback

Search Result 291, Processing Time 0.021 seconds

Tube phonation in water for patients with hyperfunctional voice disorders: The effect of tube diameter and water immersion depth on bubble height and maximum phonation time (과기능적 음성장애 환자의 물저항발성: 튜브 직경과 물 깊이가 물거품 높이 및 최대발성지속시간에 미치는 영향)

  • Min Gyeong Kim;Seong Hee Choi;Jong-In Youn
    • Phonetics and Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.31-40
    • /
    • 2023
  • Tube phonation in water has been widely used for voice training among semi-occluded vocal tract (SOVT) exercises in which the patient bubbles with phonation keeping the tube submerged in water. This study aims to investigate the effect of tube diameter and water depth on bubble height and maximum phonation time (MPT) for patients with hyperfunctional voice disorders. Seventeen patients with hyperfunctional voice disorders were asked to bubble with sustained /u/ at the different inner diameters of tube (5, 7, and 10 mm), water depth (4, 7, and 10 cm). A water resistance phonation biofeedback system using a water height sensor was used for recording bubble height and MPT. The bubble height was significantly changed by the tube diameter while MPT was significantly changed with the tube diameter and water depth. Although the wider tube presented significantly lower bubble height for a given depth, relatively consistent bubble height was maintained. Depending on the water depth, the bubble height did not significantly differ for a given tube diameter. In addtion, MPT significantly decreased with water depth and a wider tube led significantly shorter MPT. A water level-driven water resistance biofeedback system provided useful information on bubble characteristics and vocal fold vibration depending on tube diameter and water depth. It can be useful to monitor the breath support during water resistance phonation for patients with hyperfunctional voice disorders.

The Development of an Attention Enhancement System Using Virtual Environment and Biofeedback (가상환경과 바이오피드백을 이용한 집중력 증진 시스템의 개발)

  • 한민수;이장한;권준수;강동주
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.11a
    • /
    • pp.222-227
    • /
    • 2001
  • ADHD라는 것은 일반적으로 학업, 직업, 여러 사회활동에 있어서 지속적으로 일어날 수 있는 주의력 결핍 및 충동성 장애를 일컫는다. 전세계적으로 매년 이 장애를 가진 환자의 수가 증가하고 있지만 이의 치료방법으로는 전통적으로 사용되어져 온 약물치료나 기타 인지행동치료 등으로 한정이 되어있는 실정이다. 이에 본 연구에서는 가상현실과 바이오피드백을 이용한 집중력 증진 시스템을 개발 하였다.

  • PDF

Walkway system for measuring and training in gait

  • Hirokawa, Sunji;Matsumura, Kouji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10a
    • /
    • pp.797-800
    • /
    • 1987
  • We developed a biofeedback gait training system; a 12 m measuring walkway with a training walker which moves at prescribed velocity. The walkway measures a.11 temporal and distance factors of gait. This system provides visual feedback for distance factors and auditory one for temporal at the prescribed walking velocity. Experiments were performed on normal and degenerative knee joint subjects, and this system was verified to be very useful.

  • PDF

Therapeutic Methods Using a Biofeedback Anal Spincter Control System (바이오피드백 항문 괄약근 조절 시스템을 사용한 치료기)

  • Ji, Jun-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2704-2706
    • /
    • 2002
  • 본 논문에서는 항문 괄약근 전용 근전도 센서(Intra-Anal Sensor)를 항문내에 삽입한 후 운동을 하면 시스템 하드웨어와 연결된 80C196KC 마이크로 콘트롤러와 프로그램에 의해서 LED Display 및 스피커 출력을 통해 괄약근 근전도 신호의 크기를 나타내 주며, 컴퓨터와 직접 연결하면 PC상의 모니터 출력을 통해 보다 손쉽게 환자의 상태를 알아볼 수 있도록 Visual C 프로그램을 사용한 윈도우 프로그램을 구현하였다.

  • PDF

Comparison of the Cross-Sectional Area of Longus Colli and Muscle Activity of Sternocleidomastoid in Subjects With Forward Head Posture on the Two Craniocervical Flexion Methods

  • Son, Min-chan;Hwang, Ui-jae;Jung, Sung-hoon;Ahn, Sun-hee;Kim, Hyun-a;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.25 no.2
    • /
    • pp.62-70
    • /
    • 2018
  • Background: The craniocervical flexion (CCF) exercise is one of the effective exercise in correcting forward head posture (FHP). However, some people with FHP achieve CCF with compensatory movements, for example, low cervical flexion using superficial neck flexors such as the sternocleidomastoid (SCM) muscle. No study has yet investigated whether a dual­pres ure biofeedback unit (D-PBU) method to prevent low cervical flexion would be helpful in performing pure CCF movement. Objects: The purpose of this study was to compare the effects of the CCF using D-PBU method and the traditional CCF method on the cross-sectional area (CSA) of the longus colli muscle (LCM) and the activity of SCM muscle in subjects with FHP. Methods: Twenty­four FHP subjects (male: 16, female: 8) were recruited for this study. All subjects performed CCF using two different methods: the traditional CCF method and the CCF using D-PBU method. The CSA of the LCM was measured via ultrasound, and surface electromyography was used to measure SCM muscle activity. Results: The change in CSA of the LCM was significantly larger during the CCF using D-PBU method ($1.28{\pm}.09$) compared with the traditional CCF method ($1.19{\pm}.08$) (p<.05). The SCM muscle activity using the CCF using D-PBU method ($2.01{\pm}1.97$ %MVIC) was significantly lower than when using the traditional CCF method ($2.79{\pm}2.32$ %MVIC) (p<.05). Conclusion: The CCF using D-PBU method can be recommended for increasing LCM activation and decreasing SCM muscle activity during CCF movement in subjects with FHP.

Effects of Abdominal Drawing-in Maneuver on Muscle Activity of the Trunk and Legs during Flat Walking (복부 드로잉-인 기법이 평지 보행 시 몸통과 다리의 근 활성도에 미치는 효과)

  • Ahn, Su-Hong;Lee, Su-Kyoung;Jo, Hyun-Dai
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.15 no.2
    • /
    • pp.49-56
    • /
    • 2020
  • PURPOSE: This study examined the difference in muscle activity of the trunk and legs during flat walking with or without an abdominal drawing-in maneuver. METHODS: This study was conducted on 15 healthy males and eight females who were attending D University in Busan. This experiment was conducted after 15 minutes of abdominal drawing-in training using a pressure biofeedback unit before the experiment, and the difference in the muscle activity of the trunk and legs during flat walking with or without an abdominal drawing-in technique was investigated. Surface electromyography was used, and the electrode attachment site was the right sternocleidomastoid muscle, splenius capitis muscle, rectus abdominis muscle, external abdominal oblique muscle, transverse abdominis muscle, erector spinae muscle, vastus medialis muscle, and vastus lateralis muscle (TM DTS, Noraxon, USA). The data were analyzed statistically using a paired t-test on SPSS version 18.0 (IBM). RESULTS: The muscle activity of the rectus abdominis muscle, external abdominal oblique muscle, transverse abdominis muscle, vastus medialis muscle were increased significantly and maintained more than walking without maintaining an abdominal drawing-in maneuver (p < .05). Moreover, muscle activity of the erector spinae muscle was decreased significantly and maintained more than walking without maintaining an abdominal drawing-in maneuver (p < .05). CONCLUSION: Maintaining an abdominal drawing-in maneuver during flat walking is more effective during walking training.

Effect of Horizontal Adduction Force on Infraspinatus and Deltoid Activities During the Side-Lying Wiper Exercise Using Pressure Biofeedback

  • Kim, Hyun-a;Hwang, Ui-jae;Jung, Sung-hoon;Ahn, Sun-hee;Kim, Jun-hee;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.77-83
    • /
    • 2017
  • Background: Shoulder external rotation exercises are commonly used to improve the stabilizing ability of the infraspinatus. Although the side-lying wiper exercise (SWE) is the most effective shoulder external rotation exercise to maximize infraspinatus activity, the effect of adduction force on the infraspinatus and posterior deltoid has not been demonstrated. Objects: This study was conducted to investigate whether horizontal adduction force increases infraspinatus activity and decreases posterior deltoid activity. Methods: Twenty-eight healthy subjects (male: 21, female: 7; $age=23.5{\pm}1.8years$; $height=170.1{\pm}7.4cm$; $weight=69.4{\pm}9.6kg$) were recruited. Subjects were asked to perform the SWE under two conditions: (1) general SWE and (2) SWE with adduction force using pressure biofeedback. Surface electromyography (EMG) signals of the infraspinatus and posterior deltoid were recorded during SWE. Paired t-tests were used to compare the EMG activity of the infraspinatus and posterior deltoid between the two conditions. Results: Posterior deltoid muscle activity was significantly decreased following SWE with adduction force ($7.53{\pm}4.52%$) relative to general SWE ($11.68{\pm}8.42%$) (p<.05). However, there was no significant difference in the infraspinatus muscle activity between the SWE with adduction force ($28.33{\pm}12.16%$) and the general SWE ($26.54{\pm}13.69%$) (p>.05). Conclusion: Horizontal adduction force while performing SWE is effective at decreasing posterior deltoid activity.

Comparison of Cervical Flexor Muscles Thickness During Cranial-Cervical Flexor Exercise According to Pressure Levels and Eye Directions in Healthy Subjects

  • Chang, Jong Sung;Lee, Jeon Hyeong
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.50-54
    • /
    • 2015
  • Purpose: The purpose of this study is to investigate differences of cervical flexor muscle thickness (i.e., sternocleidomastoid muscle and deep cervical flexor muscles) depending on levels of pressure bio-feedback unit and eye directions during cranial-cervical flexor exercise in healthy subjects. Methods: A total of 30 subjects (12 males and 18 females) who had no medical history related to musculoskeletal and neurological disorders were enrolled in this study. They were instructed to perform cranial-cervical flexion exercise with adjustment of five different pressures (i.e., 22 mmHg, 24 mmHg, 26 mmHg, 28 mmHg, and 30 mmHg) using a pressure biofeedback unit, according to three different eye directions (i.e., $0^{\circ}$, $20^{\circ}C$, and $40^{\circ}C$). Muscle thickness of sternocleidomastoid muscle and deep cervical flexor muscles was measured according to pressure levels and eye directions using ultrasonography. Results: In results of muscle thickness in sternocleidomastoid muscle and deep cervical flexor muscles, the thickness of those muscles was gradually increased compared to the baseline pressure level (22 mmHg), as levels in the pressure biofeedback unit during cranial-cervical flexion exercise were increasing. In addition, at the same pressure levels, muscle thickness was increased depending on ascending eye direction. Conclusion: Our findings showed that muscle thickness of sternocleidomastoid muscle and deep cervical flexor muscles was generally increased during cranial-cervical flexion exercise, according to increase of eye directions and pressure levels. Therefore, we suggested that lower eye direction could induce more effective muscle activity than the upper eye direction in the same environment during cranial-cervical flexion exercise.

Development of Weight Shifting Training System using Biofeedback for Post-stroke Hemiplegic Patients with Step Length Asymmetry (보폭 비대칭을 보이는 뇌졸중 후 편마비 환자를 위한 체중이동 훈련 시스템 개발)

  • Kim, Seeun;Kim, Deog Young;Kim, Jung Hoon;Choi, Jong Hyun;Joo, So Young;Kang, Na Kyung;Baek, Yoon Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.450-458
    • /
    • 2013
  • The aim of this study was to develop and verify gait training system for post-stroke hemiplegia patients with step length asymmetry. Most post-stroke hemiplegic patients show gait asymmetry and weight shifting training has been suggested as a useful method for improving the walking ability. However, verbal cue by physical therapist may be not effective. Therefore, our weight shift training system was designed to give a feedback to patients through precise plantar pressure and center of pressure (COP) measurement. This weight shifting biofeedback training system is composed of F-Scan plantar pressure measurement system and software development kit (SDK) for Windows operating system. Two post-stroke patients with step length asymmetry were enrolled in this study. After training for six weeks, the weight shift score and step length ratio of two all patients were improved and approached to them of non-disabled. This system developed in this study may improve the step length asymmetry, and therefore this system is also expected to improve a walking ability in hemiplegic patients.

Correlation between Weight Bearing Ratio and Functional Level for Development of Pressure Sensor Biofeedback in Stroke Patient

  • Moon, Young;Kim, Mi-Sun;Choi, Jong-Duk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.9 no.3
    • /
    • pp.315-324
    • /
    • 2014
  • PURPOSE: This study aimed to determine the correlation of weight bearing ability at the affected side with balance and gait abilities for the development of pressure biofeedback based equipment to stroke patients. METHODS: This study included 35 patients with stroke patient. The tests were conducted to determine the weight bearing ratio while pushing a step forward the affected side, static balance ability using the total length of COP(Center of pressure), sway velocity of COP, COP velocity at the X and Y axis. Functional reaching test (FRT), berg balance scale (BBS) were used to assess the dynamic balance ability and timed up and go test (TUG), 10m walk test (10mWT) were used assess the gait ability respectively. In order to determine the correlation between measured variables, bivariate correlation analysis was conducted. RESULTS: A significant correlation of the weight bearing ratio were shown with COP total length and velocity(r=-.34), Y-axis velocity(r=-.39), FRT(r=.42), BBS(r=.54), TUG (r=-.39), and 10m walking test (r=-.42). CONCLUSION: This study result showed that as patients with stroke had more weight bearing ratio at the affected side, not only their static and dynamic balance abilities increased more but also functional gait ability improved more. These results mean that, to improve stroke patients' static, dynamic balance ability and gait ability, weight bearing training with the affected side foot placed one step forward necessary for gaits are important.