• 제목/요약/키워드: biodegradable copolymers

검색결과 46건 처리시간 0.029초

Preparation and Characterization of PEG/PLA Multiblock and Triblock Copolymer

  • Zhao, Hesong;Liu, Zhun;Park, Sang-Hyuk;Kim, Sang-Ho;Kim, Jung-Hyun;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1638-1642
    • /
    • 2012
  • A series of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) tri and multiblock copolymers with relatively high molecular weights were synthesized through the coupling reaction between the bis(acyl chloride) of carboxylated PLA and mono or dihydroxy PEG. The coupling reaction and the copolymer structures were monitored by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The melting temperature (Tm) of PEG blocks decreased with the presence of PLA sequences attaching to PEG blocks. The CMC values were determined to be 10-145 mg/L depending on the length of PLA and PEG blocks and the structure of the block copolymers.

Preparation and Chain-extension of P(LLA-b-TMC-b-LLA) Triblock Copolymers and Their Elastomeric Properties

  • Kim, Ji-Heung;Lee, Ju-Hee
    • Macromolecular Research
    • /
    • 제10권2호
    • /
    • pp.54-59
    • /
    • 2002
  • ABA triblock copolymers of L-lactide and trimethylene carbonate with several different compositions were prepared by sequential ring-opening polymerization in the presence of diethylene glycol. Also chain-extension reactions of the resulting copolymers were carried out using hexamethylene diisocyanate to produce relatively high molecular weight polymers, which could be cast into elastomeric tough films. The polymers with certain L-lactide contents were partially crystalline, exhibiting two-phase morphology. The polymer films showed reversible elastic behavior under tensile tension, providing a novel thermoplastic elastomer possessing desirable properties such as biodegradability and good mechanical properties.

Thermoresponsive Phase Transitions of PLA-block-PEO-block-PLA Triblock Stereo-Copolymers in Aqueous Solution

  • Lee, Hyung-Tak;Lee, Doo-Sung
    • Macromolecular Research
    • /
    • 제10권6호
    • /
    • pp.359-364
    • /
    • 2002
  • A series of PLA-PEO-PLA triblock stereo-copolymers with varying PLA/PEO and L-DL-LA ratios were synthesized via ring opening pelymerizations. Aqueous solutions of these copolymers undergo thermo-responsive phase transitions as the temperature monotonically increases. Further study shows that there is a critical gel concentration (CGC), and also lower and upper critical gel temperatures (CGTs), at which the thermo-responsive phase transition occurs. The CGC and CGTs are affected by various factors such as block length, as well as the compositions of the PLA blocks and of the additives. In particular, the changes in the phase diagram produced by varying the L-/DL-LA ratio in the PLA blocks were determined to be mainly due to consequent stereo-regularity changes in the PLA blocks.

Heparinized Bioactive Polymers for Biomedical Applications

  • Park, Ki-Dong;Go, Dong-Hyun;Bae, Jin-Woo;Jee, Kyung-Soo
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.48-49
    • /
    • 2006
  • The incorporation of heparin to biomaterials has been widely studied to improve the biocompatibility (blood and cell) of biomaterials surfaces. In our laboratory, various kinds of heparinized polymers including heparinized thermosensitive polymers ($Tetronic^{(R)}$-PLA(PCL)-heparin copolymers) and star-shaped PLA-heparin copolymers have been developed as a novel blood/cell compatible material. These heparinized polymers have demonstrated their unique properties due to bound heparin, resulting in improved biocompatibility. These heparinized bioactive polymers can be applied as blood and tissue compatible biodegradable materials in variable medical application such as tissue engineering and drug delivery system.

  • PDF

Poly$({\gamma}-benzyl\;L-glutamate)$/Poly(ethylene oxide)-Lactoselactone 블록공중합체와 이들의 미립자 제조 및 특성 (Preparation and Characterization of Poly$({\gamma}-benzyl\;L-glutamate)$/Poly(ethylene oxide)-Lactoselactone Block Copolymers and Their Microspheres)

  • 김영훈;조종수;성용길;정병호;이강춘
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권3호
    • /
    • pp.237-240
    • /
    • 1992
  • A series of biodegradable block copolymers consisting of $poly({\gamma}-benzyl\;L-glutamate)$ (PBLG) and poly(ethylene oxide) (PEO)-lactoselactone were prepared by polymerization of PEO-lactoselactone and ${\gamma}-benzyl$ L-glutamate-N-carboxyanhydride and characterized by IR and NMR. From circular dichroism measurements, it was found that the polymers exist in the ${\alpha}-helical$ conformation. Block copolymer microspheres were prepared by solvent-extraction-precipitation method for their primary evaluation for medical and biological applications.

  • PDF

Synthesis and pH-Dependent Micellization of Sulfonamide-Modified Diblock Copolymer

  • Pal Ravindra R.;Kim Min Sang;Lee Doo Sung
    • Macromolecular Research
    • /
    • 제13권6호
    • /
    • pp.467-476
    • /
    • 2005
  • The main objective of this study was to develop and characterize pH-sensitive biodegradable polymeric materials. For pH-sensitivity, we employed three kinds of moieties: 2-amino-3-(lH-imidazol-4-yl)-propionic acid (H), N-[4-( 4,6-dimethyl-pyrimidin-2ylsulfamoyl)-phenyl]succinamic acid (SM), and 2- {3-[ 4-( 4,6-dimethyl-pyrim­idin- 2-ylsulfamoyl)-phenylcarbamoyl]-propionylamino} -3-(3 H - imidazol-4-yl)-propionic acid (SH). The pH -sensitive diblock copolymers were synthesized by ring opening polymerization and coupling reaction from poly(ethylene glycol) (MPEG), $\varepsilon$-caprolactone (CL), D,L-lactide (LA) and pH-sensitive moieties. The pH-sensitive SH molecule was synthesized in a two-step reaction. The first step involved the synthesis of SHM, a methyl ester derivative of SH, by coupling reaction of SM and L-histidine methyl ester dihydrochloride, whereas the second step involved the hydrolysis of the same. The synthesized SM, SHM and SH molecules were characterized by FTIR, $^{1}H$-NMR and $^{13}C$-NMR spectroscopy, whereas diblock copolymers and pH-sensitive diblock copolymer were characterized by $^{1}H$-NMR and GPC analysis. The critical micelle concentrations were determined at various pH conditions by fluorescence technique using pyrene as a probe. The micellization and demicellization studies of pH-sensitive diblock copolymers were also done at different pH conditions. The pH-sensitivity was further established by acid-based titration and DLS analysis.

직접 용액 축중합에 의한 Poly(lactic acid-co-mandelic acid)의 합성 및 특성 조사 (Synthesis and Characterization of Poly(lactic-co-mandelic acid)s by Direct Solution Polycondensation)

  • 김완중;김지흥;김수현;김영하
    • 폴리머
    • /
    • 제24권3호
    • /
    • pp.431-436
    • /
    • 2000
  • 폴리락트산의 열적 안정성과 기계적 물성을 개선하고자 측쇄에 벤젠고리를 함유한 천연 $\alpha$-히드록시산인 만델린산(mandelic acid)과 L-락트산을 직접 용액 축중합법으로 공중합체를 합성하고 그 열적, 물리적 성질 등을 조사하였다. 합성된 공중합체는 무정형이었으며, 만델린산의 함량이 증가할수록 유리전이온도와 분해개시온도가 상승함을 열분석을 통해 알 수 있었다. 또한 만델린산을 5, 10 wt% 함유한 공중합체의 필름의 경우 그 기계적 성질이 다소 향상된 결과를 얻었다.

  • PDF

온도감응 및 생분해성 폴리에틸렌 글리콜-폴리카프로락톤과 폴리에틸렌 글리콜-폴리락타이드 공중합체의 합성 (Synthesis of Thermosensitive and Biodegradable Methoxy Poly(ethylene glycol)-Polycaprolactone and Methoxy Poly(ethylene glycol)-Poly(lactic acid) Block Copolymers)

  • 서광수;박종수;김문석;조선행;이해방;강길선
    • 폴리머
    • /
    • 제28권3호
    • /
    • pp.211-217
    • /
    • 2004
  • 메톡시 폴리(에털렌 글러콜)과 생분해성 폴리에스테르 계열의 카프로락톤 그러고 락타이드로 구성된 블록 공중합체를 수용액 상에서 온도에 따른 솔-젤 전이 현상을 연구하였다. 폴러(에틸렌 글리콜)-폴리카프로락톤 (MPEG-PCL)은 HCI${\cdot}Et_{2}O$촉매 존재 하에서 실온에서 반응 용매로서 메틸렌클로라이드를 사용하여 카프로락톤기 개환을 통하여 합성되었다. 또한, 폴리(에틸렌 글리콜)-폴리(락틱 에시드) (MPEG-PLLA)는 촉매로서 stannous octoate를 사용하여 톨루엔에서 115${\circ}C$에서 중합을 실시하였다. 합성된 블록 고분자는 $^1$H-NMR, IR 그리고 GPC 뿐만 아니라 수용액상에서의 온도 감응성 상전이 형상을 관찰함으로써 그 특성을 분석하였다. 소수기의 사슬길이가 증가함에 따라 솔-젤 전이 온도가 증가하였고 상전이 곡선은 낮은 농도로 급격한 기울기의 증가가 일어났다. 인체온도에서 젤 형성을 확인하기 위하여, 각각의 블록 공중합체 MPEG-PCL과 MPEG-PLLA를 수용액에 20 wt% 농도로 준비하여 쥐에 주입한 후 신체에서의 젤 형성을 확인하였다. 본 연구를 통하여 블록 공중합체가 약물과 단백질의 주사형 이식형제제 등의 생체용 재료로서 가능성을 가지고 있음을 확인하였다.