• Title/Summary/Keyword: biocompatible capsule alginate

Search Result 3, Processing Time 0.015 seconds

Magnetic fields-assisted movement of iron oxide-nanoparticles-incorporated large scale alginate capsules

  • Lee, Dohyeon;Park, Sunho;Kim, Daun;Nam, Hyeun;Kim, Jangho
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.27-27
    • /
    • 2017
  • Biocompatible capsules have recently been highlighted as novel delivery platforms of any "materials" (e.g., drug, food, agriculture pesticide) to address current problems of living systems such as humans, animals, and plats in academia and industry for agriculture, biological, biomedical, environmental, food applications. For example, biocompatible alginate capsules were proposed as a delivery platform of biocontrol agents (e.g., bacterial antagonists) for an alternative to antibiotics, which will be a potential strategy in future agriculture. Here, we proposed a new platform based on biocompatible alginate capsules that can control the movements as an active target delivery strategy for various applications including agriculture and biological engineering. We designed and fabricated large scale biocompatible capsules using alginates and custom-made nozzles as well as gelling solutions. To develop the active target delivery platforms, we incorporated the iron oxide nanoparticles in the large scale alginate capsules. It was found that the sizes of large scale alginate capsules could be controlled via various working conditions such as concentrations of alginate solutions and iron oxide nanoparticles. As a proof of concept work, we showed that the iron oxide particles-incorporated large scale alginate capsules could be moved actively by the magnetic fields, which would be a strategy as active target delivery platforms for agriculture and biological engineering (e.g., controlled delivery of agriculture pesticides and biocontrol agents).

  • PDF

Iron Oxide Nanoparticle-incorporated Alginate Capsules as Magnetic Field-assisted Potential Delivery Platforms for Agriculture Pesticides and Biocontrol Agents

  • Lee, Dohyeon;Choi, Kyoung Soon;Kim, Daun;Park, Sunho;Kim, Woochan;Jang, Kyoung-Je;Lim, Ki-Taek;Chung, Jong Hoon;Seonwoo, Hoon;Kim, Jangho
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.323-329
    • /
    • 2017
  • Purpose: Biocompatible capsules have recently been highlighted as a novel platform for delivering various components, such as drug, food, and agriculture pesticides, to overcome the current limitations of living systems, such as those in agriculture, biology, the environment, and foods. However, few active targeting systems using biocompatible capsules and physical forces simultaneously have been developed in the agricultural engineering field. Methods: Here, we developed an active targeting delivery platform that uses biocompatible alginate capsules and controls movements by magnetic forces for agricultural and biological engineering applications. We designed and fabricated large-scale biocompatible capsules, using custom-made nozzles ejecting alginate solutions for encapsulation. Results: To develop the active target delivery platforms, we incorporated iron oxide nanoparticles in the large-scale alginate capsules. The sizes of alginate capsules were controlled by regulating the working conditions, such as concentrations of alginate solutions and iron oxide nanoparticles. Conclusions: We confirmed that the iron oxide particle-incorporated large-scale alginate capsules moved actively in response to magnetic fields, which will be a good strategy for active targeted delivery platforms for agriculture and biological engineering applications, such as for the controlled delivery of agriculture pesticides and biocontrol agents.

Preparation and Characterization of Multilayer Microcapsules using Biocompatible Polymers (생체적합성 고분자를 사용한 다층 조립 구조 캡슐의 제조와 특성)

  • Jeon, Woohong;Kim, Gwang Yeon;Kim, Gue-Hyun;Ha, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.178-184
    • /
    • 2010
  • The aim of this work is the fabrication of polyelectrolyte microcapsules composed of biocompatible polymers such as chitosan, heparin and alginate, to encapsulate the fluorescein isothiocyanate(FITC)-albumin, and to investigate the protein release behavior therefrom. Polyelectrolyte capsules with 4-layer structures could be prepared with biocompatible materials by oppositely charged adsorption using melamin-foramide as a template. Transmission electron microscope(TEM), scanning electron microscope(SEM) and optical microscope confirmed hollow capsule structures. Protein release before and after encapsulation was monitored with a UV-Vis spectrometer. Microcapsules have different behaviors depending on the kind of polyelectrolyte polymers, chitosan-heparin capsules or chitosan-alginate capsules. In conclusion, the polyelectrolyte multilayer shells can be switched between an open and closed state by means of tuning the pH value.