• Title/Summary/Keyword: biochemical methane potential

Search Result 74, Processing Time 0.028 seconds

Effects of Substrate to Inoculum Ratio on the Biochemical Methane Potential of Piggery Slaughterhouse Wastes

  • Yoon, Young-Man;Kim, Seung-Hwan;Shin, Kook-Sik;Kim, Chang-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.600-607
    • /
    • 2014
  • The aim of this study was to assess the effect of substrate to inoculum ratio (S/I ratio) on the biochemical methane potential (BMP) and anaerobic biodegradability ($D_{deg}$) of different piggery slaughterhouse wastes, such as piggery blood, intestine residue, and digestive tract content. These wastes were sampled from a piggery slaughterhouse located in Kimje, South Korea. Cumulative methane production curves for the wastes were obtained from the anaerobic batch fermentation having different S/I ratios of 0.1, 0.5, 1.0, and 1.5. BMP and anaerobic biodegradabilities ($D_{deg}$) of the wastes were calculated from cumulative methane production data for the tested conditions. At the lowest S/I ration of 0.1, BMPs of piggery blood, intestine residue, and digestive tract content were determined to be 0.799, 0.848, and $1.076Nm^3kg^{-1}-VS_{added}$, respectively, which were above the theoretical methane potentials of 0.539, 0.644, and $0.517Nm^3kg^{-1}-VS_{added}$ for blood, intestine residue, and digestive tract content, respectively. However, BMPs obtained from the higher S/I ratios of 0.5, 1.0, and 1.5 were within the theoretical range for all three types of waste and were not significantly different for the different S/I ratios tested. Anaerobic biodegradabilities calculated from BMP data showed a similar tendency. These results imply that, for BMP assay in an anaerobic reactor, the S/I ratio of anaerobic reactor should be above 0.1 and the inoculum should be sufficiently stabilized to avoid further degradation during the assay.

Biochemical Methane Potential of Chemically Enhanced Primary Treatment Sludge for Energy-Independence of Sewage Treatment Plants (하수처리장 에너지 자립화를 위한 고도화학침전 슬러지의 메탄잠재력 평가)

  • Chun, Minsun;Kim, Hyoungho;Bae, Hyokwan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.4
    • /
    • pp.322-331
    • /
    • 2020
  • By introducing chemically enhanced primary treatment (CEPT) in the first stage of sewage treatment, organic matter in sewage can be effectively recovered. Because CEPT sludge contains a high biodegradable organic matter in volatile solids (VS), it is feasible to convert the collected CEPT sludge into energy through anaerobic digestion. This study examined the properties and biochemical methane potential (BMP) of the CEPT sludge obtained from a sewage treatment plant located in an ocean area. The CEPT sludge contains a VS content of 37,597 mg/L, which is higher than that of excessive sludge (ES), i.e., 33,352 mg-VS/L. In the methane generation reaction, the lag period was as short as 1 to 2 days. The BMP for the CEPT sludge was 0.57 ㎥-CH4/kg-VSremoved which is better than that of ES, i.e., 0.36 ㎥-CH4/kg-VSremoved. Unfortunately, the CEPT sludge showed a high salinity as 0.56~0.75% probably due to the saline sewage. Due to the salinity, repeated BMP testing in a sequencing batch reactor showed significantly low methane production rates and BMPs. Also, the ES showed a strongly reduced BMP when the salinity was adjusted from 0.20 to 0.70% by NaCl. The ES mixture with higher CEPT content showed a better BMP, which is suitable for co-digestion. Besides, anaerobic digestion for 100% CEPT sludge can be a considerable option instead of co-digestion.

Basic Study on the in-situ Biogenic Methane Generation from Low Grade Coal Bed (저품위 석탄의 원지반에서의 생물학적 메탄가스 생산에 관한 기초연구)

  • Wang, Fei;Jeon, Ji-Young;Lim, Hak-Sang;Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2015
  • In the present work, a basic study on the in-situ biogenic methane generation from low grade coal bed was conducted. Lignite from Indonesia was used as a sample feedstock. A series of BMP (Biochemical Methane Potential) tests were carried out under the different experimental conditions. Although nutrients and anaerobic digester sludge were added to the coal, the produced amount of methane was limited. Both temperature control and particle size reduction showed little effect on the increase of methane potential. When rice straw was added to lignite as an external carbon source, methane yield of 94.4~110.4 mL/g VS was obtained after 60 days of BMP test. The calorific value of lignite after BMP test decreased (4.5~12.1 %) as increasing the content of rice straw (12.5~50 wt % of lignite), implying that anaerobic digestion of rice straw led to partial degradation of lignite. Therefore, rice straw could be used as an external carbon source for the start-up of in-situ biogas generation from low grade coal bed.

Biochemical Methane Potential and Biodegradability of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland (가축분뇨와 간척지 사료작물의 메탄발생량과 생분해도)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.56-64
    • /
    • 2008
  • Anaerobic biodegradability (AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical methane potential (BMP) test has been carried out to evaluate the methane yields of animal manures such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland such as maize, sorghum, barley, rye, Italian ryegrass (IRG), rape, rush, and waste sludge produced from slaughterhouse wastewater treatment plant (SSWTP). In the ultimate methane yield and biodegradability of animal manure, those of pig slurry were 345 $mlCH_4/gVS_{fed}$ and 44.7% higher than 247 $mlCH_4/gVS_{fed}$ and 46.4% of cattle slurry (Cat. 2). The ultimate methane yield and biodegradability of spike-crop rye (Rye 1) were 442.36 $mlCH_4/gVS_{fed}$ and 86.5% the highest among different forage crops, those of the other forage crops ranged from 306.6 to 379 $mlCH_4/gVS_{fed}$ of methane yield with the AB having the range of about 60 to 77%. Therefore the forage crops could be used as a good substrate to increase the methane production and to improve the biodegradability in anaerobic co-digestion together with animal manure.

  • PDF

Biochemical Methane Potential of Agricultural Byproduct in Greenhouse Vegetable Crops (국내 주요 시설채소 부산물의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1252-1257
    • /
    • 2011
  • Number of crop residues generated at large amount in agriculture can be utilized as substrate in methane production by anaerobic digestion. Greenhouse vegetable crop cultivation that adopting intensive agricultural system require the heating energy during winter season, meanwhile produce waste biomass source for the methane production. The purpose of this study was to investigate the methane production potential of greenhouse vegetable crop residues and to estimate material and energy yield in greenhouse system. Cucumber, tomato, and paprika as greenhouse vegetable crop were used in this study. Fallen fruit, leaf, and stem residues were collected at harvesting period from the farmhouses (Anseong, Gyeonggi, Korea) adopting an intensive greenhouse cultivation system. Also the amount of fallen vegetables and plant residues, and planting density of each vegetable crop were investigated. Chemical properties of vegetable waste biomass were determined, and theoretical methane potentials were calculated using Buswell's formula from the element analysis data. Also, BMP (Biochemical methane potential) assay was carried out for each vegetable waste biomass in mesophilic temperature ($38^{\circ}C$). Theoretical methane potential ($B_{th}$) and Ultimate methane potential ($B_u$) off stem, leaf, and fallen fruit in vegetable residues showed the range of $0.352{\sim}0.485Nm^3\;kg^{-1}VS_{added}$ and $0.136{\sim}0.354Nm^3\;kg^{-1}VS_{added}$ respectively. The biomass yields of residues of tomato, cucumber, and paprika were 28.3, 30.5, and $21.5Mg\;ha^{-1}$ respectively. The methane yields of tomato, cucumber, and paprika residues showed 645.0, 782.5, and $686.8Nm^3\;ha^{-1}$. Methane yield ($Nm^3\;ha^{-1}$) of crop residue may be highly influenced by biomass yield which is mainly affected by planting density.

A Fundamental Study on the Methane Conversion of Agriculture, Forestry and Fisheries Wastes (농·축 ·수산 폐기물의 메탄전환에 관한 기초연구)

  • Hong, Soon-Seok;Park, Sang-Jeon;Hong, Chong-Joon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.31-42
    • /
    • 1998
  • A fundamental study on methane conversion for the collection organic wastes of agriculture, forestry and fishers was performed in a laboratory scale. As a result, selected Run B sample were obtained 18.41 C/N Ratio and 168.96 mg/L TCOD; Under the biochemical methane potential test, theoretical and actual methane generation was 313.6 mg/L VS added and 234.2 mg/L VS added, respectively; However, methane conversion from Run B were occurred 74% by anaerobic digestion. By the first order reaction kinetics, kinetic constant were $0.2476d^{-1}$ for Run B. Three steps fill-up filter reactor was evaluated methane content 16% up to promote than blank reactor; TCOD and SCOD have reduced 44.7% and 44.2%, respectively.

  • PDF

Biochemical Methane Potential Analysis for Anaerobic Digestion of Marine Algae (해조류의 혐기소화를 위한 메탄생산퍼텐셜 분석)

  • Lee, Jun-Hyeong;Kim, Tae-Bong;Shin, Kook-Sik;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • Marine algae(Macro algae) are easily bio-degradable, and by-products are available as feed and fertilizer. The biomass of marine algae has higher CO2 absorption capacity than the wood system, and is highly valuable in use due to its fast growth speed and wide cultivation area without special cost for raw material production. In 2018, Marine algae production was 1,722,486ton, such as Saccharina japonica, Undaria pinnatifida and Porphyra tenera, the large amounts of by-products have been generated in the food processing facilities for commercialization. In this study, Saccharina japonica, Undaria pinnatifida were collected in the south coast region and Porphyra tenera was collected in the west coast region. The theoretical methane potential and biochemical methane potential(BMP) were analyzed, and Modified Gompertz model and Parallel first order kinetics model were adopted for the interpretation of the cumulative methane production curves. The theoretical methane potential of Saccharina japonica, Undaria pinnatifida and Porphyra tenera were 0.393, 0.373 and 0.435 N㎥/kg-VS, respectively. BMP obtained by the Modified gompertz model 0.226, 0.227, and 0.241 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively. And BMP obtained by the Parallel first order kinetics model were 0.220, 0.243, and 0.240 N㎥/kg-VS for Saccharina japonica, Undaria pinnatifida and Porphyra tenera, respectively.

Effect of Rice Straw on Methane Production Potential of Cow Manure (우분과 볏짚의 병합 혐기성 소화를 통한 메탄 생산에 대한 고찰)

  • Park, So Yun;Jang, Jeong A;Zhao, Xin;Hong, Jin-Kyung;Jho, Eun Hea
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.71-81
    • /
    • 2022
  • BACKGROUND: Animal manures are one of the biggest sources of greenhouse gases and improper manage-ment of animal wastes contributes to the increasing greenhouse gases in the atmosphere. Con-verting greenhouse gases generated from animal manures to energy is one way of contributing to the net-zero carbon emissions. METHODS AND RESULTS: The potential for methane production from cow manure (CM) was studied by measuring the methane yield using the biochemical methane potential (BMP) test. In particular, the effect of co-digestion using rice straw (RM) on the methane production was studied. The methane yields from the co-digestion of CM and RS were statistically similar to that from the mono-digestion of CM or RS. But there was a synergy effect at the CM:RS ratio of 1:2 and 1:1. This can be attributed to the increased C/N ratio. The changed microbial community structure with the addition of substrates (CM, RS) probably led to the increase in the methane produc-tion. CONCLUSION(S): The methane production potential of the particular CM used in this study was not improved by the addition of RS as a co-substrate. The addition of substrates to the anaerobic sludge promoted the increase in the microbial species having synergetic relationship with methano-gens, and this can partially explain the increase in the methane production with the addition of substrates. Overall, there are needs for further studies to improve the methane yield from CM.

Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

  • Pham, C.H.;Triolo, J.M.;Cu, T.T.T.;Pedersen, L.;Sommer, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.864-873
    • /
    • 2013
  • In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane ($CH_4$) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) ($CH_4$ NL $kg^{-1}$ VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC.

High-rate Anaerobic Co-digestion of Food Waste and Sewage Sludge (음식물쓰레기와 하수슬러지의 고율 혐기성 통합소화)

  • Heo, Nam-Hyo;Chung, Sang-Soon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.60-72
    • /
    • 2005
  • The effect of alkaline pre-treatment on the solubilization of waste activated sludge(WAS) was investigated, and the biodegradability of WAS, pretreated WAS, [PWAS], food waste and two types of mixture were estimated by biochemical methane potential [BMP] test at $35^{\circ}C$. The biodegradability of PWAS and mixture waste were significantly improved due to the effect of alkaline hydrolysis of WAS. An alkaline pre-treatment was identified to be one of the useful pre-treatment for improving biodegradability of WAS and mixture waste. In high-rate anaerobic co-digestion system coordinate with an alkaline pre-treatment in process, the digesters were operated at the HRT of 5, 7, 10 and 13 days with a mixture of FW $50\%\;and\;PWAS\;50\%,\;$In term of $CH_4$ content, VS removal and specific methane production [SMP] which are the parameters in the performance of digester, the optimum operating condition was found to be a HRT of 7 days and a OLR of 4.20g/L-day with the highest SMP of 0.340 L $CH_4/g$ VS.

  • PDF