• Title/Summary/Keyword: biochemical genetics

Search Result 130, Processing Time 0.029 seconds

Clinical, Biochemical, and Genetic Characterization of Glycogen Storage Type IX in a Child with Asymptomatic Hepatomegaly

  • Kim, Jung Ah;Kim, Ja Hye;Lee, Beom Hee;Kim, Gu-Hwan;Shin, Yoon S.;Yoo, Han-Wook;Kim, Kyung Mo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.18 no.2
    • /
    • pp.138-143
    • /
    • 2015
  • Glycogen storage disease type IX (GSD IX) is caused by a defect in phosphorylase b kinase (PhK) that results from mutations in the PHKA2, PHKB, and PHKG2 genes. Patients usually manifest recurrent ketotic hypoglycemia with growth delay, but some may present simple hepatomegaly. Although GSD IX is one of the most common causes of GSDs, its biochemical and genetic diagnosis has been problematic due to its rarity, phenotypic overlap with other types of GSDs, and genetic heterogeneities. In our report, a 22-month-old boy with GSD IX is described. No other manifestations were evident except for hepatomegaly. His growth and development also have been proceeding normally. Diagnosed was made by histologic examination, an enzyme assay, and genetic testing with known c.3210_3212del (p.Arg1070del) mutation in PHKA2 gene.

Hypersensitive and Apoptotic Responses of Pepper Fruit Against Xnthomonas axonopodis pv. glycines Infection

  • Chang, Sung-Pae;Kim, Young-Ho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.72.1-72
    • /
    • 2003
  • Generally, plants defend themselves against pathogens by structural and biochemical reactions. Defense structures act as physical barriers and inhibit the pathogen from gaining entrance and spreading through the plant. Xanthomonas axonopodis pv glycines, the causal pathogen of bacterial pustule of soybean, causes hypersensitive response (HR). When pepper fruits were inoculated with X. axonopodis pv. glycines, in situ, time-series defense-related structural changes occurred in the inoculated sites. Early responses were programmed cell death (PCD), characterized by condensation and vacuolization of the cytoplasm, condensation of nuclear materials, and fragmentation of the nuclear DNA, which were observed by transmission electron microscopy. Nuclear fragmentation was proven by TUNEL method under confocal laser scanning microscopy and DNA laddering through eletrophoresis. At later stages, plant responses were cell elongation and cell division, forming a periderm-like boundary layer that demarcated healthy tissues from the inoculation sites. Using several stains such as toluidine blue, sudan IV, annexin V, and phloroglucinol-HCl, defense-related materials and structural changes were also examined.

  • PDF

Molecular Genetics and Diagnostic Approach of Mucolipidosis II/III

  • Sohn, Young Bae
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2016
  • Mucolipidosis (ML) II/III are autosomal recessive diseases caused by deficiency of post-translational modification of lysosomal enzymes. The mannose-6-phosphate (M6P) residue in lysosomal enzymes synthesized by N-acetylglucosamine 1-phosphotransferase (GlcNAc-phosphotransferase) serves as recognition marker for trafficking in lysosomes. GlcNAc-phosphotransferase is encoded by GNPTAB and GNPTG. Mutations in GNPTAB cause severe ML II alpha/beta and the attenuated ML III alpha/beta. Whereas mutations in GNPTG cause the ML III gamma, the attenuated type of ML III variant. For the diagnostic approaches, increased urinary oligosaccharides excretion could be a screening test in clinically suspicious patients. To confirm the diagnosis, instead of measuring the activity of GlcNAc phosphotransferase, measuring the enzymatic activities of different lysosomal hydrolases are useful for diagnosis. The activities of several lysosomal hydrolases are decreased in fibroblasts but increased in serum of the patients. In addition, the sequence analysis of causative gene is warranted. Therefore, the confirmatory diagnosis requires a combination of clinical evaluation, biochemical and molecular genetic testing. ML II/III show complex disease manifestations with lysosomal storage as the prime cellular defect that initiates consequential organic dysfunctions. As there are no specific therapy for ML to date, understanding the molecular pathogenesis can contribute to develop new therapeutic approaches ultimately.

Novel SSF Process for Ethanol Production from Microcrystalline Cellulose Using the $\delta$-Integrated Recombinant Yeast, Saccharomyces cerevisiae L2612$\delta$GC

  • Cho, Kwang-Myung;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.3
    • /
    • pp.340-345
    • /
    • 1999
  • A novel simultaneous saccharification and fermentation (SSF) process from the microcrystalline cellulose to ethanol was developed by using $\delta$-integrated recombinant cellulolytic Saccharomyces cerevisiae L2612$L2612\deltaGC$, which can utilize cellulose as carbon and energy sources. The optimum amount of enzymes needed for the efficient conversion of cellulose to ethanol at $30^{\circ}C$ was determined with commercial cellulolytic enzymes. By fed-batch cultivation, the heterologous cellulolytic enzymes were accumulated up to 42.67% of the total cellulase and 29% of the $\beta$-glucosidase needed for the efficient SSF process. When this $\delta$-integrated recombinant yeast was applied to the successive SSF step for ethanol production, 20.35 g/l of ethanol was produced after 12 h from 50 g/l of microcrystalline cellulose. By using this novel SSF process, a considerable amount of commercial enzymes was reduced.

  • PDF

Characterization of Plasmids from Multiple Antibiotic Resistant Vibrio sp. Isolated from Molluscs and Crustaceans

  • Manjusha, Sayd;Sarita, Ganabhat Bhat
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.197-207
    • /
    • 2012
  • This study investigated the role of plasmids and their relationship with the multiple antibiotic resistance of 30 Vibrios sp. isolated from molluscs and crustaceans sampled from the Kerala coastal waters of India. The biochemical identification and antibiotic resistance profiles were determined, followed by the plasmid profiles, conjugation and transformation efficiencies. The results showed a considerable difference in the level of bacterial resistance to various antibiotics; while all 30 strains were found to be MAR Vibrios sp. and their resistance patterns varied. All the strains were resistant to amoxycillin, ampicillin and carbeniciliin. 87% were resistant to rifampicin; 74% to cefuroxime; 67 to streptomycin; 53% to norfloxacin and ciprofloxacin and 47% to furazolidone and nalidixic acid. In addition to their antibiotic resistance, the plasmid DNA of the MAR Vibrios strains isolated from the molluscs and crustaceans was also studied. Nine strains isolated from crustaceans and molluscs were found to harbor 1-3 plasmids with sizes varying from 5. 98 kb to 19. 36 kb. The average transformation efficiency was about $5{\times}10^{-8}$ and the conjugation efficiency varied from $2.1{\times}10^{-3}$ to $10^{-9}$. A further study of antibiotic resistance patterns may be useful to test the extent of drug resistance in seafoods and help to devise a nationwide antibiotic policy.

Erythrocyte Sedimentation Rate: Its Determinants and Relationship with Risk Factors Involved in Ischemic Stroke

  • Kaur, Kirandeep;Kaur, Amandeep;Kaur, Anupam
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Erythrocyte sedimentation rate (ESR) evaluation is a useful tool for monitoring disease activity in various inflammatory and non-inflammatory conditions. ESR is known to be influenced by a multitude of confounding factors. The present study aimed to assess the possible determinants of the ESR and its relationship with various risk factors involved in ischemic stroke. ESR and other hematological and biochemical parameters were investigated in 163 ischemic stroke patients (107 males and 56 females) selected based on imaging techniques including magnetic resonance imaging (MRI) or computed tomography (CT) scans. Statistical analysis was performed using the SPSS 16.0 software. Linear regression analysis showed a significant inverse relationship of hemoglobin (Hb) and hematocrit or packed cell volume (PCV) (P<0.001 for females; P<0.01 for males) with the ESR. It was observed that the red blood cell (RBC) count was not strongly correlated with the ESR (P<0.05 for both males and females). It was also observed that sex significantly affected the variables determining the ESR levels, whereas age had no effect. Gender differences were also observed with respect to Hb, RBC, PCV, mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and ESR. The possible determinants of higher ESR levels in ischemic stroke may be sex, Hb, hematocrit, and RBC count, but the role of other clinical and laboratory parameters cannot be underestimated.

Isolation and Characterization of Mucous Exopolysaccharide (EPS) Produced by Vibrio furnissii Strain VB0S3

  • Bramhachari P.V.;Kishor P.B. Kavi;Ramadevi R.;Kumar Ranadheer;Rao, B. Rama;Dubey Santosh Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.44-51
    • /
    • 2007
  • Marine bacterial strains were isolated trom coastal regions of Goa and screened for the strains that produce the highest amount of mucous expolysaccharide (EPS). Our screening resulted in the identification of the strain Vibrio furnissii VB0S3 (hereafter called VB0S3), as it produced the highest EPS in batch cultures during the late logarithmic growth phase. The isolate was identified as VB0S3 based on morphological and biochemical properties. Growth and EPS production were studied in mineral salts medium supplemented with NaCl (1.5%) and glucose (0.2%). The exopolymer was recovered from the culture supernatant by using three volumes of cold ethanol precipitation and dialysis procedure. Chemical analyses of EPS revealed that it is primarily composed of neutral sugars, uronic acids, and proteins. Fourier-transform infrared (FT-IR) spectroscopy revealed the presence of carboxyl, hydroxyl, and amide groups, which correspond to a typical heteropolymeric polysaccharide, and the EPS also possessed good emulsification activity. The gas chromatographic analysis of an alditol-acetate derivatized sample of EPS revealed that it was mainly composed of galactose and glucose. Minor components found were mannose, rhamnose, fucose, ribose, arabinose, and xylose. EPS was readily isolated from culture supernatants, which suggests that the EPS was a slime-like exopolysaccharide. This is the first report of exopolysaccharide characterization that describes the isolation and characterization of an EPS expressed by Vibrio surnissii strain VB0S3. The results of the study contribute significantly and go a long way towards an understanding of the correlation between growth and EPS production, chemical composition, and industrial applications of the exopolysaccharide in environmental biotechnology and bioremediation.

Emerging Genomics Technologies in Nutritional Sciences: Applications to obesity and hypertension research

  • Mouss, Naima-Moustaid;Sumithra Urs;Kim, Suyeon;Heo, Young-Ran
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 2002.05a
    • /
    • pp.29-41
    • /
    • 2002
  • While the sequencing of several genomes was underway, several advanced techniques in genetics, molecular biology and protein chemistry emerged. Within the nutritional sciences, while the focus on nutrition education, epidemiology and public health aspects remains essential; it is crucial to incorporate the new advances in gene and protein discovery in nutritional studies. Nutrition is a discipline that has always integrated social, biochemical and physiological sciences from the studies at the molecule level to studies at the population level. For this reason, nutritionists are in a prime position to readily incorporate the current genomics approaches in nutrition research, All the available analytical techniques can and should be used in modern nutritional sciences. These include genetics, genomics, proteomics and metabolomics which also require integration and use of bioinformatics and computational methods for data analysis and management. These applications will be briefly reviewed with a primary focus on what the genomics and genetics approaches offer to nutritionists. We will use one of our research focus areas to illustrate uses of some of these applications in obesity-hypertension research. Our central hypothesis is that adipose tissue is an endocrine organ that plays a major role in obesity and related hypertension. We are primarily studying the renin angiotensin system (RAS). We provide evidence from our own studies and others for the paracrine as well as endocrine role of adipocyte-derived angiotensin II in adipocyte gene expression, adiposity and blood pressure regulation. Both cell culture studies as well as knockout and transgenic mice models are used to test our hypothesis. Genomics and proteomics technologies are currently developed to complement our physiological and molecular studies on the RAS and for a fine analysis of this system and its function in health and disease.

  • PDF

Emerging Genomics Technologies in Nutritional Sciences : Applications to Obesity and Hypertension Research

  • Moustaid-Moussa;Sumithra Urs;Kim, Suyeon;Heo, Young-Ran
    • Proceedings of the Korean Nutrition Society Conference
    • /
    • 2002.06a
    • /
    • pp.598-603
    • /
    • 2002
  • While the sequencing of several genomes was underway, several advanced techniques in genetics, molecular biology and protein chemistry emerged. Within the notritional sciences, while the focus on nutrition education, epidemiology and public health aspects remains essential; it is crucial to incorporate the new advances in gene and protein discovery in nutritional studies. Nutrition is a discipline that has always integrated social, biochemical and physiological sciences from the studies at the molecule level to studies at the population level. for this reason, nutritionists are in a prime position to readily incorporate the current genomics approaches in nutrition research. All the available analytical techniques can and should be used in modem nutritional sciences. These include genetics, genomics, proteomics and metabolomics which also require integration and use of bioinformatics and computational methods for data analysis and management. These applications will be briefly reviewed with a primary focus on what the genomics and genetics approaches offer to nutritionists. We will use one of our research focus areas to illustrate uses of some of these applications in obesity-hypertension research. Our central hypothesis is that adipose tissue is an endocrine organ that plays a major role in obesity and related hypertension. We are primarily studying the renin angiotensin system (RAS). We provide evidence from our own studies and others for the paracrine as well as endocrine role of adipocyte-derived angiotensin II in adipocyte gene expression, adiposity and blood pressure regulation. Both cell culture studies as well as knockout and transgenic mice models are used to test our hypothesis. Genomics and proteomics technologies are currently developed to complement our physiological and molecular studies on the RAS and for a fine analysis of this system and its function in health and disease.

  • PDF

Reevaluation of Enumeration of Bacillus cereus Grown on Mannitol-Egg York-Polymyxin B Agar (Mannitol-Egg York-Polymyxin B 선택 배지에서 Bacillus cereus 계수 방법의 재평가)

  • Yun, Suk-Hyun;Kim, Yong-Sang;Jeong, Do-Yeon;Hahn, Kum-Su;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.208-214
    • /
    • 2009
  • To avoid ambiguity in counting the number of colony, about 1,500 of colonies grown on B. cereus selective agar plates were grouped into 12 types by morphological difference and then identified by biochemical and 16S rDNA nucleotide sequence. Among them, seven colony types with 11 to 15 mm diameters of halo were identified as B. cereus or B. cereus subsp. cytotoxis. Five mm sized colonies with no halo, which have not been considered as B. cereus according to the manufacturer's manual, were identified as B. cereus. A colony type with double halos of only 6 mm in diameter was also B. cereus. Other three types were proven to be Enterococcus sp., Brevibacillus sp., and B. subtilis, respectively. PCR results showed that only 9 types that are identified as B. cereus strains harbor at least one of B. cereus toxin genes.