• 제목/요약/키워드: biochemical genetics

Search Result 130, Processing Time 0.024 seconds

LRRK2 and membrane trafficking: nexus of Parkinson's disease

  • Hur, Eun-Mi;Jang, Eun-Hae;Jeong, Ga Ram;Lee, Byoung Dae
    • BMB Reports
    • /
    • v.52 no.9
    • /
    • pp.533-539
    • /
    • 2019
  • Recent evidence from genetics, animal model systems and biochemical studies suggests that defects in membrane trafficking play an important part in the pathophysiology of Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) constitute the most frequent genetic cause of both familial and sporadic PD, and LRRK2 has been suggested as a druggable target for PD. Although the precise physiological function of LRRK2 remains largely unknown, mounting evidence suggests that LRRK2 controls membrane trafficking by interacting with key regulators of the endosomal-lysosomal pathway and synaptic recycling. In this review, we discuss the genetic, biochemical and functional links between LRRK2 and membrane trafficking. Understanding the mechanism by which LRRK2 influences such processes may contribute to the development of disease-modifying therapies for PD.

MOLECULAR CONTROLS OF EPIDERMAL GROWTH AND DIFFERENTIATION: TRANSFORMING GROWTH FACTORE

  • Son, Youngsook;Fuchs, Elaine
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.209-229
    • /
    • 1991
  • In the epidermis of skin, a fine balance exists between proliferating progenitor cells and terminally differentiating cells. We examined the effects of TGF-betas and retinoic acid (RA) on controlling this balance in normal human epidermal keratinocytes cultured under conditions where most morphological and biochemical features of epidermis in vivo are retained. Our results revealed marked and pleiotropic effects of both TGF-beta and RA on kerationcytes. In contrast to retinoids, TGF-betas acted on mitotically active basal cells to retard cell proliferation.

  • PDF

Treatment and management of patients with inherited metabolic diseases (유전성 대사질환의 치료 및 관리)

  • Lee, Jin-Sung
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.11
    • /
    • pp.1152-1157
    • /
    • 2006
  • Inherited metabolic disease is rare disorders that show symptoms mainly in pediatric age and early treatment is important for preventing complications of the disease. Recent development in molecular and biochemical techniques help clinicians with proper diagnosis of patients, however, many of the disease still remain lack of effective therapeutic strategies. Better understanding on biochemical and molecular basis of pathogenesis of the disease combined with advanced medical care would provide new sight on the disease that can also improve the quality of life and long-term prognosis of patients. Traditionally, there are several modalities in the treatment of metabolic diseases depend on the biochemical basis of the disease such as diet restriction, removing or blocking the production of toxic metabolites, and stimulating residual enzyme activity. The inherited metabolic disease is not familiar for many clinicians because the diagnosis is troublesome, treatment is complicated and prognosis may not as good as expected in other diseases. Recently, new therapeutic regimens have been introduced that can significantly improve the medical care of patients with metabolic disease. Enzyme replacement therapy has showed promising efficacy for lysosomal storage disease, bone marrow transplantation is effective in some disease and gene therapy has been trying for different diseases. The new trials for treatment of the disease will give us promising insight on the disease and most clinicians should have more interest in medical progress of the metabolic disease.

A Case Report for a Korean Patient with Mucopolysaccharidosis IIIA Confirmed by Biochemical and Molecular Genetic Investigation (생화학적 검사 및 분자유전학적 검사에 의해 뮤코다당증 제3A형으로 진단된 한국인 환자의 증례 보고)

  • Kim, Borahm;Cho, Sung Yoon;Sohn, Young Bae;Park, Hyung-Doo;Lee, Soo-Youn;Song, Junghan;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.1
    • /
    • pp.44-48
    • /
    • 2015
  • Mucopolysaccharidosis (MPS) IIIA is a lysosomal storage disorder caused by abnormalities of the enzyme Heparan N-sulfatase that is required for degradation of heparan sulfate. The patient in this study was a 5 year-old boy who presented with macrocephaly and developmental delay. Urinary excretion of glycosaminoglycan was increased (26 g/moL creatinine, reference range: <7 g/moL creatinine) and a distinct band of heparan sulfate was shown in electrophoresis. Heparan N-sulfatase activity was significantly decreased in skin fibroblasts (0.2 pmoL/min/mg protein, reference range: 9-64 pmoL/min/mg protein). PCR and direct sequencing analysis of the SGSH gene showed compound heterozygous mutations: c.1040C>T (p.S347F) and c.703G>A (p.D235N). This is the first report for a Korean patient with MPS IIIA who was confirmed by biochemical investigation and molecular genetic analyses.

Taxonomy of a Soil Bacteria YNB54 Strain Which Shows Specific Antagonistic Activities against Plant Pathogenic Phytophthora spp. (식물역병균 Phytophthora spp.에 특이 길항균인 YNB54 균주의 분류)

  • Kim Sam-Sun;Kwon Soon-Wo;Lee Seon-Young;Kim Soo-Jin;Koo Bon-Sung;Weon Hang-Yeon;Kim Byung-Yong;Yeo Yun-Soo;Lim Yoong-Ho;Yoon Sang-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.101-108
    • /
    • 2006
  • YNB54 strain which shows inhibitory activities specific to the plant pathogenic Phytophthora sp. on potato dextrose agar medium was screened among lots of strains isolated from Korean soils. To identify taxonomy of the Phytophthora specific antagonistic bacteria YNB54, 165 rDNA sequence, MIDI fatty acid composition, DNA-DNA hybridization, GC content, and commercial multitest systems such as API 20E and Biolog GN were performed. Results of commercial kits including lots of biochemical and physiological reactions showed that this strain was closely related to taxa including Enterobacter cloacae and Enterobacter cancerogenus species than other genera(Citerobacter Klebsiella, Leclercia). Also, analysis of its MIDI, G+C contents, and DNA-DNA hybridization suggests that this strain was more similiar to the Genus Enterobacter than other genera (Citerobacter Klebsiella, Leclercia). This strain was potentially identified as Enterobacter sp. by these results. But our 16S ribosomal DNA sequences (rDNA) analysis confirmed that it was more closely related to the cluster of Citerobacter freundii ATCC 29935 than any other Enterobacter species. In the absence of defined phylogenetic critia for delineating genera, the results observed with Citrobacter and Enterobacter species suggest that further studies are needed to clarify their relationships. This investigation demonstrates that YNB54 strain is genetically diverse and potentially more taxonomically complex than hitherto realized. Further study is necessary to confirm their taxonomic positions.

Physiological response of red macroalgae Pyropia yezoensis (Bangiales, Rhodophyta) to light quality: a short-term adaptation

  • Xuefeng Zhong;Shuai Che;Congying Xie;Lan Wu;Xinyu Zhang;Lin Tian;Chan Liu;Hongbo Li;Guoying Du
    • ALGAE
    • /
    • v.38 no.2
    • /
    • pp.141-150
    • /
    • 2023
  • Light quality is a common environmental factor which influences the metabolism of biochemical substances in algae and leads to the response of algal growth and development. Pyropia yezoensis is a kind of economic macroalgae that naturally grows in the intertidal zone where the light environment changes dramatically. In the present study, P. yezoensis thalli were treated under white light (control) and monochromatic lights with primary colors (blue, green, and red) for 14 days to explore their physiological response to light quality. During the first 3 days of treatment, P. yezoensis grew faster under blue light than other light qualities. In the next 11 days, it showed better adaptation to green light, with higher growth rate and photosynthetic capacity (reflected by a higher rETRmax = 61.58 and Ek = 237.78). A higher non-photochemical quenching was observed in the treatment of red light than others for 14 days. Furthermore, the response of P. yezoensis to light quality also results in the difference of photosynthetic pigment contents. The monochromatic light could reduce the synthesis of all pigments, but the reduction degree was different, which may relate to the spectral absorption characteristics of pigments. It was speculated that P. yezoensis adapted to a specific or changing light environments by regulating the synthesis of pigments to achieve the best use of light energy in photosynthesis and premium growth and metabolism.

Genetic Diversity Studies and Identification of Molecular and Biochemical Markers Associated with Fusarium Wilt Resistance in Cultivated Faba Bean (Vicia faba)

  • Mahmoud, Amer F.;Abd El-Fatah, Bahaa E.S.
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.11-28
    • /
    • 2020
  • Faba bean (Vicia faba L.) is one of the most important legume crops in Egypt. However, production of faba bean is affected by several diseases including fungal diseases. Fusarium wilt incited by Fusarium oxysporum Schlecht. was shown to be the most common wilt disease of faba bean in Assiut Governorate. Evaluation of 16 faba bean genotypes for the resistance to Fusarium wilt was carried out under greenhouse conditions. Three molecular marker systems (inter-simple sequence repeat [ISSR], sequence related amplified polymorphism [SRAP], and simple sequence repeat [SSR]) and a biochemical marker (protein profiles) were used to study the genetic diversity and detect molecular and biochemical markers associated with Fusarium wilt resistance in the tested genotypes. The results showed that certain genotypes of faba bean were resistant to Fusarium wilt, while most of the genotypes were highly susceptible. The percentage of disease severity ranged from 32.83% in Assiut-215 to 64.17% in Misr-3. The genotypes Assiut-215, Roomy-3, Marut-2, and Giza2 were the most resistant, and the genotypes Misr-3, Misr-1, Assiut-143, Giza-40, and Roomy-80 performed as highly susceptible. The genotypes Assiut-215 and Roomy-3 were considered as promising sources of the resistance to Fusarium wilt. SRAP markers showed higher polymorphism (82.53%) compared with SSR (76.85%), ISSR markers (62.24%), and protein profile (31.82%). Specific molecular and biochemical markers associated with Fusarium wilt resistance were identified. The dendrogram based on combined data of molecular and biochemical markers grouped the 16 faba bean genotypes into three clusters. Cluster I included resistant genotypes, cluster II comprised all moderate genotypes and cluster III contained highly susceptible genotypes.

Generation and DNA Characterization of High-lysine Mutants by Biochemical Selection from Callus Culture of 'Hwayeongbyeo'

  • Yi Gi-Hwan;Choi Jun-Ho;Kim Kyung-Min;Jeong Eung-Gi;Park Hyang-Mi;Kim Doh-Hoon;Ku Yeon Chung;Eun Moo-Young;Kim Ho-Yeong;Nam Min-Hee
    • Plant Resources
    • /
    • v.8 no.1
    • /
    • pp.60-66
    • /
    • 2005
  • Lysine is the first essential amino acid for optimal nutrient quality in rice grain. For the narrow genetic diversities of lysine contents in rice, somaclonal variation was the source of mutation in our breeding program. Biochemical selection was conducted using 1 mM S-(2-aminoethyl) cysteine followed by two passages of 5 mM lysine plus threonine in the callus subculture medium. The lysine contents in endosperm of all progenies recovered from the biochemical selection were higher than those of their donor cultivar 'Hwayeongbyeo'. These elevated lysine levels of mutants were successfully transmitted to $M_4$ generation. The lysine contents in endosperm varied 3.85 to $4.80\%$ compare to their donor cultivar 'Hwayeongbyeo' was $3.85\%$. Three of high-lysine germplasms, Lys-l, Lys-2 and Lys-7 were selected by biochemical selection and rapid screening methods. DNA analysis showed that a new insertion of Tos 17 which mapped to rice chromosome 11 on the high-lysine mutant, Lys-2.

  • PDF

Discovery of Cyclin-dependent Kinase Inhibitor, CR229, Using Structure-based Drug Screening

  • Kim, Min-Kyoung;Min, Jae-Ki;Choi, Bu-Young;Lim, Hae-Young;Cho, Youl-Hee;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1712-1716
    • /
    • 2007
  • To generate new scaffold candidates as highly selective and potent cyelin-dependent kinase (CDK) inhibitors, structure-based drug screening was performed utilizing 3D pharmacophore conformations of known potent inhibitors. As a result, CR229 (6-bromo-2,3,4,9-tetrahydro-carbolin-1-one) was generated as the hit-compound. A computational docking study using the X-ray crystallographic structure of CDK2 in complex with CR229 was evaluated. This predicted binding mode study of CR229 with CDK2 demonstrated that CR229 interacted effectively with the Leu83 and Glu81 residues in the ATP-binding pocket of CDK2 for the possible hydrogen bond formation. Furthermore, biochemical studies on inhibitory effects of CR229 on various kinases in the human cervical cancer HeLa cells demonstrated that CR229 was a potent inhibitor of CDK2 ($IC_{50}:\;3\;{\mu}M$), CDKI ($IC_{50}:\;4.9\;{\mu}M$), and CDK4 ($IC_{50}:\;3\;{\mu}M$), yet had much less inhibitory effect ($IC_{50}:>20\;{\mu}M$) on other kinases, such as casein kinase 2-${\alpha}1$ (CK2-${\alpha}1$), protein kinase A (PKA), and protein kinase C (PKC). Accordingly, these data demonstrate that CR229 is a potent CDK inhibitor with anticancer efficacy.

Clinical and Biochemical Evaluation of Institutionalized Population with Mental Retardation or Developmental Delay (정신지체 및 발달지연으로 수용된 인구의 임상, 내분비 및 대사 질환 평가)

  • Kim, Sook-Za;Jeon, Young-Mi;Song, Woong-Ju;Kim, Hak-Sung;Cho, Hwa-Yeon;Kil, Hong-Ryang;Kim, Seung-Hwan
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.2
    • /
    • pp.94-98
    • /
    • 2012
  • Purpose: Developmental delay and mental retardation are frequently occurring disorders that present major socio-economic burden on the affected individual's family and society. Both can be congenital or acquired. However, a large number of people are institutionalized without exact diagnosis and, as a result, have not received proper care. Methods: 508 subjects with mental retardation or developmental delay from six institutions in Chung Buk Province were clinically evaluated and screened for metabolic and endocrinologic problems between 2000 and 2012. Results: Clinical genetic disorders were observed in 52 (10.2%) subjects. Cerebral palsy attributed to 21% of the institutionalized. 18 (3.5%) were diagnosed with metabolic disorders and 13 (2.6%) exhibited secondary endocrinologic dysfunction. Over 16% showed metabolic evidence of malnutrition. Conclusion: 21% and 3.5% of the population institutionalized due to mental retardation or developmental delay were afflicted by preventable cerebral palsy and metabolic disorders, respectively. Through early identification of the causes and early treatment, it may be possible to prevent, reduce, or alleviate the disability of many institutionalized individuals. Further research is imperative for establishing guidelines for diagnostic investigation for mental retardation.

  • PDF