• Title/Summary/Keyword: biocatalysts

Search Result 62, Processing Time 0.019 seconds

Application of Methodology for Microbial Community Analysis to Gas-Phase Biofilters (폐가스 처리용 바이오필터에 미생물 군집 분석 기법의 적용)

  • Lee, Eun-Hee;Park, Hyunjung;Jo, Yun-Seong;Ryu, Hee Wook;Cho, Kyung-Suk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.147-156
    • /
    • 2010
  • There are four key factors for gas-phase biofilters; biocatalysts(microorganisms), packing materials, design/operating techniques, and diagnosis/management techniques. Biofilter performance is significantly affected by microbial community structures as well as loading conditions. The microbial studies on biofilters are mostly performed on basis of culture-dependent methods. Recently, advanced methods have been proposed to characterize the microbial community structure in environmental samples. In this study, the physiological, biochemical and molecular methods for profiling microbial communities are reviewed, and their applicability to biofilters is discussed. Community-level physiological profile is based on the utilization capability of carbon substrate by heterotrophic community in environmental samples. Phospholipid fatty acid analysis method is based on the variability of fatty acids present in cell membranes of different microorganisms. Molecular methods using DNA directly extracted from environmental samples can be divided into "partial community DNA analysis" and "whole community DNA analysis" approaches. The former approaches consist in the analysis of PCR-amplified sequence, the genes of ribosomal operon are the most commonly used sequences. These methods include PCR fragment cloning and genetic fingerprinting such as denaturing gradient gel electrophoresis, terminal-restriction fragment length polymorphism, ribosomal intergenic spacer analysis, and random amplified polymorphic DNA. The whole community DNA analysis methods are total genomic cross-DNA hybridization, thermal denaturation and reassociation of whole extracted DNA and extracted whole DNA fractionation using density gradient.

Cloning of α-Amylase Gene from Unculturable Bacterium Using Cow Rumen Metagenome (소 반추위 메타게놈에서 비배양 세균의 α-amylase 유전자 클로닝)

  • Cho, Soo-Jeong;Yun-Han-Dae
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.1013-1021
    • /
    • 2005
  • The metagenomes of complex microbial communities are rich sources of novel biocatalysts. The gene encoding an extracellular $\alpha$-amylase from a genomic DNA of cow rumen was cloned in Escherichia coli DH5$\alpha$ and sequenced. The $\alpha$-amylase (amyA) gene was 1,893 bp in length, encoding a protein of 631 amino acid residues with calculated molecular weight of 70,734 Da. The molecular weight of the enzyme was estimated to be about 71,000 Da by active staining of a SDS-PACE. The enzyme was 21 to $59\%$ sequence identical with other amyloyltic enzymes. The AmyA was optimally active at pH 6.0 and $40\%$. The AmyA had a calculated pI of 5.87. AmyA expressed in E. coli DH5$\alpha$ was enhanced in the presence of $Mg^{2+}$ (20 mM) and $Ca^{2+}$ (30 mM) and inhibited in the presence of $Fe^{2+}$ and $Cu^{2+}$. The origin of amyA gene could not be confirmed by PCR using internal primer of amyA gene from extracted genomic DNA of 49 species rumen culturable bacteria so far. An amyh is supposed to obtained from unculturable rumen bacterium in cow rumen environment.