• Title/Summary/Keyword: biocatalyst

Search Result 148, Processing Time 0.026 seconds

Microbial styrene monooxygenase-catalyzed asymmetric synthesis of enantiopure styrene oxide derivatives (미생물 유래 Styrene monooxygenase를 이용한 광학활성 styrene oxide 유도체의 비대칭합성)

  • Lee, Eun-Yeol;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.239-245
    • /
    • 2009
  • Enantiopure styrene oxide derivatives are versatile building blocks for the synthesis of enantiopure pharmaceuticals. Styrene monooxygenase (SMO) catalyzes an asymmetric addition of an oxygen atom into a double bond of vinylaromatic compounds. SMO is a commercially potential biocatalyst to synthesize a variety of enantiopure epoxides with high enantiopurity and recovery yield. In this paper development of SMO biocatalyst and commercial feasibility of SMO-catalyzed asymmetric synthesis of enantiopure stylers oxide derivatives are reviewed.

Whole Cell Bioconversion of Ricinoleic Acid to 12-Ketooleic Acid by Recombinant Corynebacterium glutamicum-Based Biocatalyst

  • Lee, Byeonghun;Lee, Saebom;Kim, Hyeonsoo;Jeong, Kijun;Park, Jinbyung;Park, Kyungmoon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.452-458
    • /
    • 2015
  • The biocatalytic efficiency of recombinant Corynebacterium glutamicum ATCC 13032 expressing the secondary alcohol dehydrogenase of Micrococcus luteus NCTC2665 was studied. Recombinant C. glutamicum converts ricinoleic acid to a product, identified by gas chromatography/mass spectrometry as 12-ketooleic acid (12-oxo-cis-9-octadecenoic acid). The effects of pH, reaction temperature, and non-ionic detergent on recombinant C. glutamiucm whole cell bioconversion were examined. The determined optimal conditions for production of 12-ketooleic acid are pH 8.0, 35℃, and 0.05 g/l Tween80. Under these conditions, recombinant C. glutamicum produces 3.3 mM 12-ketooleic acid, with a 72% (mol/mol) maximum conversion yield, and 1.1 g/l/h volumetric productivity in 2 h; and 3.9 mM 12-ketooleic acid, with a 74% (mol/mol) maximum conversion yield, and 0.69 g/l/h maximum volumetric productivity in 4 h of fermentation. This study constitutes the first report of significant production of 12-ketooleic acid using a recombinant Corynebacterium glutamicum-based biocatalyst.

Production of Liquiritigenin with Cell-based Biotransformation and Its Anti-Aging Activity (균사체 생물전환기술을 이용한 리퀘리티게닌 생산과 항노화 활성)

  • Hwang, Hye Jin;Jeong, Sang Chul;Park, Jong Pil
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.166-174
    • /
    • 2015
  • In this study, an efficient whole cell-based biotransformation for the production of liquiritigenin was developed using Laetiporus sulphureus CS0218 as biocatalyst and aqueous extracts of Glycyrrhiza uralensis as co-substrate, respectively. In order to determine the efficacy of this method, the optimal bioconversion conditions including mycelial growth, three important enzyme activities (${\beta}$-glucosidase, ${\alpha}$-rhamnosidase and ${\beta}$-xylosidase), and apparent viscosity of culture broth were monitored. After optimization, aqueous extracts of G. uralensis were added to the culture medium to directly produce algycone liquiritigenin. By applying this strategy, 67.5% of liquiritin was converted to liquiritigenin at pH 3.0 after 9 days of incubation and finally liquiritigenin was purified from the reaction mixture. And then, their biological activities including anti-oxidant and superoxide dismutase were observed. In fact, purified liquiritigenin was capable of bi-directional functions (i.e., either up-regulation or down-regulation of SIRT1 which is associated with aging). The results indicate that this strategy would be beneficial to produce biologically active liquiritigenin and could be used in pharmaceutical, cosmetic and food applications.

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

  • Guo, Zewang;Zhao, Xihua;He, Yuanzhi;Yang, Tianxing;Gao, Huifang;Li, Ganxin;Chen, Feixue;Sun, Meijing;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2017
  • Acetoin (AC) is a volatile platform compound with various potential industrial applications. AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an important potential intermediate and widely used as a precursor to synthesize novel optically active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized. Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell biocatalyst. The yield and productivity were new records for (3R)-AC production. The results exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

Aspergillus niger LK 유래의 epoxide hydrolase 클로닝 및 특성 분석

  • Lee, Eun-Jeong;Kim, Cho-Hui;Song, Seong-Gwang;Kim, Hui-Suk;Lee, Eun-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.648-651
    • /
    • 2001
  • Kinetic resolution of various racemic aromatic epoxides by newly isolated Aspergillus niger LK has been investigated, and enantioselectivity of whole-cell biocatalyst was analyzed. The epoxide hydrolase (EHase) of A. niger LK was cloned using RT-PCR. The sequence homology was compared with that of other microbial EHase and the gene for EHase was characterized at molecular level.

  • PDF

Biocatalysts in Reverse Micelles (역미셀에서 생촉매제)

  • 이강민
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 1992
  • The use of watersoluble enzymes for chemical synthesis suffers from several limitations. The solubilization of biocatalyst (Enzymes and Cells) with reverse micelles or microemulsion could be a method for bioconveision of low water soluble substrates. In this review, We will discuss the properties and the potentials of reverse micelle for catalytic bioconversion and biotechnology.

  • PDF

Study of Sugarcane Pieces as Yeast Supports for Ethanol Production from Sugarcane Juice and Molasses Using Newly Isolated Yeast from Toddy Sap

  • Babu, Neerupudi Kishore;Satyanarayana, Botcha;Balakrishnan, Kesavapillai;Rao, Tamanam Raghava;Rao, Gudapaty Seshagiri
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • A repeated batch fermentation system was used to produce ethanol using $Saccharomyces$ $cerevisiae$ strain (NCIM 3640) immobilized on sugarcane ($Saccharum$ $officinarum$ L.) pieces. For comparison free cells were also used to produce ethanol by repeated batch fermentation. Scanning electron microscopy evidently showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 72.65-76.28 g/L in an average value) and ethanol productivities (about 2.27-2.36 g/L/hr in an average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.9-3.25 g/L) with conversions ranging from 98.03-99.43%, showing efficiency 91.57-95.43 and operational stability of biocatalyst for ethanol fermentation. The results of the work pertaining to the use of sugarcane as immobilized yeast support could be promising for industrial fermentations.

Engineering CotA Laccase for Acidic pH Stability Using Bacillus subtilis Spore Display

  • Sheng, Silu;Jia, Han;Topiol, Sidney;Farinas, Edgardo T.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.507-513
    • /
    • 2017
  • Bacillus subtilis spores can be used for protein display to engineer protein properties. This method overcomes viability and protein-folding concerns associated with traditional protein display methods. Spores remain viable under extreme conditions and the genotype/phenotype connection remains intact. In addition, the natural sporulation process eliminates protein-folding concerns that are coupled to the target protein traveling through cell membranes. Furthermore, ATP-dependent chaperones are present to assist in protein folding. CotA was optimized as a whole-cell biocatalyst immobilized in an inert matrix of the spore. In general, proteins that are immobilized have advantages in biocatalysis. For example, the protein can be easily removed from the reaction and it is more stable. The aim is to improve the pH stability using spore display. The maximum activity of CotA is between pH 4 and 5 for the substrate ABTS (ABTS = diammonium 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate). However, the activity dramatically decreases at pH 4. The activity is not significantly altered at pH 5. A library of approximately 3,000 clones was screened. A E498G variant was identified to have a half-life of inactivation ($t_{1/2}$) at pH 4 that was 24.8 times greater compared with wt-CotA. In a previous investigation, a CotA library was screened for organic solvent resistance and a T480A mutant was found. Consequently, T480A/E498G-CotA was constructed and the $t_{1/2}$ was 62.1 times greater than wt-CotA. Finally, E498G-CotA and T480A/E498G-CotA yielded 3.7- and 5.3-fold more product than did wt-CotA after recycling the biocatalyst seven times over 42 h.