• 제목/요약/키워드: bioblock

검색결과 2건 처리시간 0.016초

Bioblock technique to treat severe internal resorption with subsequent periapical pathology: a case report

  • Mark Frater;Tekla Sary;Sufyan Garoushi
    • Restorative Dentistry and Endodontics
    • /
    • 제45권4호
    • /
    • pp.43.1-43.9
    • /
    • 2020
  • A variety of therapeutic modalities can be used for the endodontic treatment of a traumatized tooth with internal root resorption (IRR). The authors present a case report of the successful restoration of a traumatized upper central incisor that was weakened due to severe IRR and subsequent periapical lesion formation. A 20-year-old female patient was referred to our clinic with severe internal resorption and subsequent periapical pathosis destroying the buccal bone wall. Root canal treatment had been initiated previously at another dental practice, but at that time, the patient's condition could not be managed even with several treatments. After cone-beam computed tomography imaging and proper chemomechanical cleaning, the tooth was managed with a mineral trioxide aggregate plug followed by root canal filling using short fiber-reinforced composite, known as the Bioblock technique. This report is the first documentation of the use of the Bioblock technique in the restoration of a traumatized tooth. The Bioblock technique appears to be ideal for restoring wide irregular root canals, as in cases of severe internal resorption, because it can uniquely fill out the hollow irregularities of the canal. However, further long-term clinical investigations are required to provide additional information about this new technique.

화산력-시멘트 혼합 바이오 블록의 미생물 생장 특성 (Growth Characteristics of Microorganism on Lapilli-Cement mixed Bioblocks)

  • 박성용;박덕환;김현선;김정면;임현택;배수빈;김용성
    • 한국농공학회논문집
    • /
    • 제57권1호
    • /
    • pp.111-118
    • /
    • 2015
  • This research aims to utilize lapilli from the Mt. Baekdusan as environmently-friendly construction material. First of all, the neutralizing method for fabricating lapilli-cement-mixed bioblock was examined. And then, by use of the neuralized bioblock with microorganism for water purification, the growth inhibition effect against the pathogenic coliform bacillus was evaluated. The result regarding growth inhibition effect on pathogenic coliform bacillus indicates that the pretreatment condition, which is a concurrent procession with aqueous solution of 10% di-ammonium Phosphate after water curing, led to pH degraded below 10 which was the target value. Therefore it was concluded that the method was effective on bio-block neutralization. The microorganisms purifying water and di-ammonium phosphate were detected through the examination for microorganism existence on the bioblock, therefore it was concluded that the bioblock composed of lapilli and cement is able to be utilized in various structures as an environment friendly construction material.