• Title/Summary/Keyword: bioactive metabolites

Search Result 170, Processing Time 0.026 seconds

Optimization of Culturing Conditions for Improved Production of Bioactive Metabolites by Pseudonocardia sp. VUK-10

  • Kiranmayi, Mangamuri Usha;Sudhakar, Poda;Sreenivasulu, Kamma;Vijayalakshmi, Muvva
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2011
  • The purpose of the present study was to investigate the influence of cultural and environmental parameters affecting the growth and bioactive metabolite production of the rare strain VUK-10 of actinomycete Pseudonocardia, which exhibits a broad spectrum of in vitro antimicrobial activity against bacteria and fungi. Production of bioactive metabolites by the strain was high the in modified yeast extract-malt extract-dextrose (ISP-2) broth, as compared to other tested media. Glucose (1%) and tryptone (0.25%) were found to be the most suitable carbon and nitrogen sources, respectively, for optimum production of growth and bioactive metabolites. Maximum production of bioactive metabolites was found in the culture medium with initial pH 7 incubated with the strain for four days at $30^{\circ}C$, under shaking conditions. This is the first report on the optimization of bioactive metabolites by Pseudonocardia sp. VUK-10.

Bioprospecting of Novel and Bioactive Metabolites from Endophytic Fungi Isolated from Rubber Tree Ficus elastica Leaves

  • Ding, Zhuang;Tao, Tao;Wang, Lili;Zhao, Yanna;Huang, Huiming;Zhang, Demeng;Liu, Min;Wang, Zhengping;Han, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.731-738
    • /
    • 2019
  • Endophytic fungi are an important component of plant microbiota, and have the excellent capacity for producing a broad variety of bioactive metabolites. These bioactive metabolites not only affect the survival of the host plant, but also provide valuable lead compounds for novel drug discovery. In this study, forty-two endophytic filamentous fungi were isolated from Ficus elastica leaves, and further identified as seven individual taxa by ITS-rDNA sequencing. The antimicrobial activity of these endophytic fungi was evaluated against five pathogenic microorganisms. Two strains, Fes1711 (Penicillium funiculosum) and Fes1712 (Trichoderma harzianum), displayed broad-spectrum bioactivities. Our following study emphasizes the isolation, identification and bioactivity testing of chemical metabolites produced by T. harzianum Fes1712. Two new isocoumarin derivatives (1 and 2), together with three known compounds (3-5) were isolated, and their structures were elucidated using NMR and MS. Compounds 1 and 2 exhibited inhibitory activity against Escherichia coli. Our findings reveal that endophytic fungi from the rubber tree F. elastica leaves exhibit unique characteristics and are potential producers of novel natural bioactive products.

Marine Algicolous Endophytic Fungi - A Promising Drug Resource of the Era

  • Sarasan, Manomi;Puthumana, Jayesh;Job, Neema;Han, Jeonghoon;Lee, Jae-Seong;Philip, Rosamma
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1039-1052
    • /
    • 2017
  • Endophytic fungi have currently been acknowledged as the most promising source of bioactive compounds for drug discovery, and considerable progress has been made in exploring their diversity, species richness, and bioprospecting. Fungal endophytes from unique environmental settings offer a pool of potentially useful medicinal entities. Owing to the constant stresses imposed on macroalgae by marine environments, it is believed that algae and their associated endophytic symbionts represent a good source of structurally diverse bioactive secondary metabolites. Despite the proven significance of active metabolites of algal endophytes, little have been exploited. This review highlights the latest discoveries in algicolous endophytic research, with particular focus on the bioactive metabolites from algal endophytes. Compounds are classified according to their reported biological activities, like anticancer, antibacterial, antifungal, and antioxidant properties. Present experimental evidence suggests that a majority of the bioactive metabolites were reported from Phaeophyceae followed by Rhodophyceae and Chlorophyceae. An intensive search for newer and more effective bioactive metabolites has generated a treasure trove of publications, and this review partially covers the literature published up to 2016.

Mushrooms: An Important Source of Natural Bioactive Compounds

  • Ha, Ji Won;Kim, Juhui;Kim, Hyunwoo;Jang, Wonyoung;Kim, Ki Hyun
    • Natural Product Sciences
    • /
    • v.26 no.2
    • /
    • pp.118-131
    • /
    • 2020
  • Mushrooms are known for their various attributes in the fields of nutrition and therapeutics. With exceptional taste, aroma, and nutritional value, they are considered 'functional food'-improving health and providing nutritional benefits to the body. Mushrooms have also been widely applied therapeutically as they possess diverse bioactive compounds known as secondary metabolites. These secondary metabolites demonstrated diverse biological properties such as anticancer, anti-diabetic, immunomodulatory, antimicrobial, anti-inflammatory, antiviral, anti-allergic, and antioxidative activities. This review presents bioactive compounds from the field of mushroom metabolite research and discusses important findings regarding bioactive compounds identified during the last five years (2015 - 2019).

Thin Layer Chromatography: Bioactive Metabolites of Components of Traditional Chinese Medicines by Intestinal Bacteria

  • Kim, Dong-Hyun
    • Natural Product Sciences
    • /
    • v.10 no.4
    • /
    • pp.152-167
    • /
    • 2004
  • Traditional Chinese Medicines (TCM) have attracted great interest in recent researchers as alternative medicines for incurable diseases. This review focuses on qualitative and quantitative analytical approaches for bioactive metabolites of components flavonoids and saponins of traditional Chinese medicines by TLC system, although various methods have been introduced. Emphasis will be put on the processes of metabolite extraction from intestinal bacterial cultures or urines, separation (mobile phase) and detection. The identified metabolites by selection of extraction solvent and detection methods are also discussed. In addition, metabolite determinations of flavonoids (baicalin, apiin, rutin, quercetin, quercitrin, kaempferol, diosmin, hesperidin, poncirin, naringin, puerarin, daidzin, daidzein, tectoridin) and saponins (ginsenosides, kalopanaxsaponins, glycyrrhizin, chiisanoside, saikosaponins, soyasaponins) in culture fluid, in urine and in some herbal formula extracts are summarized. These bioactive metabolites of these components by intestinal microflora should be connected to pharmacological actions.

Bioprospecting of Endophytic Fungi as Promising Anti-MRSA Agents

  • Wei, Yee-Min;Tan, Joo-Shun;Tang, Hock-Wei;Tong, Woei-Yenn;Leong, Chean-Ring;Tan, Wen-Nee
    • Natural Product Sciences
    • /
    • v.28 no.3
    • /
    • pp.93-104
    • /
    • 2022
  • Methicillin-resistant Staphylococcus aureus (MRSA) is a serious threat to the global healthcare system. Ineffective and resistance to antibiotic treatments have increased morbidity and mortality rates worldwide. New and effective antibiotics are needed to combat against bacterial resistance. Endophytic fungi are crucial reservoirs of novel bioactive metabolites. In particular, the secondary metabolites show promising therapeutic potential, notably, antibacterial. This review discussed the emerging potential of endophytic fungi as anti-MRSA agents. The ecological sources of endophytic fungi were discussed with the synthesis of bioactive metabolites. The mode of antibacterial actions was elucidated to give a better understanding of the mechanisms involved. This review may serve as an important reference for future discovery and developments of anti-MRSA agents from endophytic fungi.

Endophytic Fungi Inhabiting Medicinal Plants and Their Bioactive Secondary Metabolites

  • Lee, Changyeol;Shim, Sang Hee
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.10-27
    • /
    • 2020
  • Endophytes are defined as microorganisms that spend part of lifetime interior of plant tissues without causing negative effects. They have been used for agricultural purpose, biofuel production, bioremediation, medication, etc. In particular, endophytes have been emerged as a good source for bioactive secondary metabolites. A large number of secondary metabolites are currently being reported. In this report, we focus on the secondary metabolites that were originated from endophytic fungi inhabiting medicinal plants. They were classified into several groups such as nitrogenous compounds, steroids, sulfide-containing metabolites, terpenoids, polyketides, and miscellaneous for discussion of chemical structures and biological activities.

Bioactive secondary metabolites produced by fungi

  • Shim, Sang Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.49-49
    • /
    • 2018
  • A variety of bioactive secondary metabolites have been reported from plant-associated microorganisms. Halophytes, plants that can only grow in hypersaline area, were reported to host beneficial microorganisms such as plant growth-promoting endophytes. The microorganisms have been reported to show notable mutualistic symbiosis with halophytes to help them survive in high saline condition. Finding out bioactive secondary metabolites as well as elucidation of relationship(s) between microbes and the host halophyte has been paid attention, because of their functional diversity. Novel microbes often have associated with novel natural products. In an effort to investigate natural compounds with interesting structures from fungi, we selected plants from a distinct environmental setting which could be a promising source. Several fungi were isolated from halophyte or medicinal plants. Some strains of the fungi were cultivated on a large scale and extracted with ethyl acetate, which were subjected to a series of chromatographic methods, leading to the isolation of tens of compounds. The isolated compounds were identified by analysis of spectroscopic methods such as 1D-, 2D-NMR, and MS. Details of isolation, structure determination, and biological activities will be discussed.

  • PDF

Optimal Conditions for Antimicrobial Metabolites Production from a New Streptomyces sp. RUPA-08PR Isolated from Bangladeshi Soil

  • Ripa, F.A.;Nikkon, F.;Zaman, S.;Khondkar, P.
    • Mycobiology
    • /
    • v.37 no.3
    • /
    • pp.211-214
    • /
    • 2009
  • An actinomycete strain was isolated from northern part of Bangladesh and identified as a new Streptomyces species on the basis of its morphological, biochemical, cultural characteristics and 16S rRNA data. Attempts were made to optimize the culture conditions for the production of antimicrobial metabolites by this strain. Antimicrobial metabolites production was started after 7 days of incubation of culture broth and reached its maximum levels after 10 days and thereafter gradually decreased. The maximum production of antimicrobial metabolites was obtained when the culture medium pH was adjusted to 8. The optimum temperature for antimicrobial metabolites production was $39^{\circ}C$, indicated the new strain as mesophilic organism. Basel medium supplemented with glucose and yeast extract as carbon and nitrogen sources, respectively, was proved to be the best for the production of bioactive metabolites. Maximum production of bioactive metabolites was when NaCl concentration was 1% and among different minerals tested, $K_2HPO_4$ and NaCl showed positive influence on antibiotic production by the strain.

Metabolism of Ginsenosides to Bioactive Compounds by Intestinal Microflora and Its Industrial Application

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.165-176
    • /
    • 2009
  • Korean ginseng, which contains ginsenosides and polysaccharides as its main constituents, is orally administered to humans. Ginsenosides and polysaccharides are not easily absorbed by the body through the intestines due to their hydrophilicity. Therefore, these constituents which include ginsenosides Rb1, Rb2, and Rc, inevitably come into contact with intestinal microflora in the alimentary tract and can be metabolized by intestinal microflora. Since most of the metabolites such as compound K and protopanaxatriol are nonpolar compared to the parental components, these metabolites are easily absorbed from the gastrointestinal tract. The absorbed metabolites may express pharmacological actions, such as antitumor, antidiabetic, anti-inflammatory, anti-allergic, and neuroprotective effects. However, the activities that metabolize these constituents to bioactive compounds differ significantly between individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. Recently, ginseng has been fermented with enzymes or microbes to develop ginsengs that contain these metabolites. However, before using these enzymes and probiotics, their safety and biotransforming activity should be assessed. Intestinal microflora play an important role in the pharmacological action of orally administered ginseng.