• Title/Summary/Keyword: bioactive ingredient

Search Result 73, Processing Time 0.027 seconds

Nutrients and bioactive potentials of edible green and red seaweed in Korea

  • Sanjeewa, K.K. Asanka;Lee, WonWoo;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.7
    • /
    • pp.19.1-19.11
    • /
    • 2018
  • Background: Traditionally, East-Asians (Korea, Japan, and China) utilize seaweeds as a food source and ingredient in traditional medicine. Korea is one of the biggest seaweed producer and consumer in the global trade. Especially, side dishes made from seaweeds are very popular in the traditional Korean cuisines. Seaweeds are popular as fresh vegetable salads and soup or eaten as snacks. Main body: Seaweeds are rich in essential nutrients, minerals, and vitamins as well as a promising source of novel bioactive compounds. The compounds (polysaccharides, polyphenols, and sterols) present in the edible Korean seaweeds possess important bioactive properties such as antioxidant, anti-inflammation, anticancer, anti-diabetic, and anticoagulant properties. Thus, the long-term consumption of seaweed has a potential to reduce the risk of cancer, diabetes, obesity, and inflammation-related complications. However, seaweed consumption is limited to the small population around the globe. Thus, it is important to increase the awareness of the health benefits of seaweeds consumption among the general population. Short conclusion: In the present study, we discussed some popular green and red edible Korean seaweeds and their health-promoting properties. This study might be useful to increase the public awareness of the consumption of seaweed as a food source.

Bioactive Substances from Ganoderma lucidum (영지의 생리활성 물질)

  • Bae Woo-Chul;Kim Yong-Seok;Lee Jun-Woo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.75-83
    • /
    • 2005
  • The popular edible mushroom Ganoderma lucidum was considered the most valuable medicine in ancient Asia and was belived to bring longevity, due to its mysterious power of healing the body and calming the mind. Today, Ganoderma lucidum is still widely revered as a valuable health supplement and herbal medicine worldwide, as studies (mostly conducted in China, Korea, Japan, America) into the medicinal and nutritional values of Ganoderma lucidum revealed that it does indeed contain certain bioactive ingredient (such as polysaccharide, triterpene) that might be benefical for the prevention and treatment of a variety of ailments, including diseases such as hypertension, diabetes, hepatitis, cancer, AIDS.

Preparation of Bioactive Kefir with Added Flaxseed (Linum usitatissimum L.) Extract

  • Jeong, Dana;Kim, Dong-Hyeon;Chon, Jung-Whan;Song, Kwang-Young;Kim, Hyunsook;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.176-183
    • /
    • 2017
  • Flaxseed (Linum usitatissimum L.) is an important food, oil, and fiber crop of the family Linaceae. Although flaxseed has been consumed as a food ingredient for several centuries, its nutritional benefits have not yet been completely established. Flaxseed is a good source of lignans, nonstarch polysaccharides, and high-quality proteins. Hence, in this study, we aimed to prepare a bioactive kefir containing flaxseed and to examine the physicochemical characteristics of kefir containing different concentrations of flaxseed. We investigated the pH, and sensory evaluation of bioactive Kefir containing different concentrations of flaxseed. We investigated the pH, total anthocyanins (TAs), and sensory evaluation of bioactive Kefir containing different concentrations of flaxseed. The pH of this bioactive kefir decreased, whereas the TA content increased with increasing incubation time; however, these parameters were not affected by the amount of added flaxseed. As the addition rate of flaxseed increased, the scores for overall acceptability, texture, color, flavor, and taste in sensory evaluations were generally the same as or lower than the control. There were no significant differences in overall acceptability, texture, color, flavor, and taste between the control and treated groups. Therefore, further studies are needed to develop methods for production of health-improving kefir as a dietary supplement based on the functional properties of flaxseed.

Recent Trends in New Functional Foods using Pomegranate Fruit Peel (석류 과일 껍질을 활용하는 새로운 기능성 식품의 최근 연구 동향)

  • kim, Sung-Kih
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.181-190
    • /
    • 2017
  • Functional foods are of great significance since our society is accelerating into aging. An aging society has many physiological metabolic diseases such as hypertension, diabetes, heart disease, cancer, dementia and geriatric diseases. Fundamental treatments for the elderly are almost impossible and the social burden is heavy. If these diseases can be prevented or alleviated by improving dietary habits using functional foods, the significance would be very large. Pomegranate has been found to have 124 different kinds of phytochemicals. Polyphenols have a wide range of protective effects including various physiological metabolic diseases and cancers. It is necessary to develop functional foods such as preservatives and food extenders which can contribute to food safety, required in the food industry, by using such bioactive substances. Pomegranates have been reported to decrease the impact of many serious illnesses. There is a considerable amount of bioactive substances in the peel of a pomegranate, which has potent anticancer, antioxidant, antimicrobial and anti-apoptotic properties. Unfortunately, the peel is typically discarded after processing. Despite knowledge regarding the bioactive substances in the pomegranate peel and peel extracts, including their functionality and diversity, the knowledge is not well known by consumers in general. The aim of this study was to review up to date research trends for processing and developing new functional foods by utilizing nutritional functional substances, favourite food materials, and materials for processing food contained in pomegranate peels and pomegranate peel extracts. This study will summarize the data found in pomegranate peel and pomegranate peel extract literature mainly recently published in Science Direct. There are polyphenolic compounds (ellagitannins, punicalagin, proanthocyanidin, flavonoids, polysaccharides, etc.) in the fruit peel, making up about 50% of the pomegranate's weight. The polyphenol content of a pomegranate fruit peel is 149.91 mg/g, which is about 100 times higher than the juice. Paying attention to the fact that the ellagitannin content (14.22 mg/g) in the fruit peel is also twice as high as that of the fruit juice and seeds, that confirms the possibility of utilizing the peel as a food ingredient capable of developing new, functional bioactive foods.

Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway

  • Song, Geu Rim;Choi, Yoon Jung;Park, Soo Jin;Shin, Subeen;Lee, Giseong;Choi, Hui Ji;Lee, Do Yup;Song, Gyu-Yong;Oh, Sangtaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1559-1567
    • /
    • 2021
  • The root bark of Morus alba L. has cytotoxic activity against several types of cancer cells. However, little is known about its chemopreventive mechanisms and bioactive metabolites. In this study, we showed that M. alba L. root bark extracts (MRBE) suppressed β-catenin response transcription (CRT), which is aberrantly activated in various cancers, by promoting the degradation of β-catenin. In addition, MRBE repressed the expression of the β-catenin/T-cell factor (TCF)-dependent genes, c-myc and cyclin D1, thus inhibiting the proliferation of RPMI-8226 multiple myeloma (MM) cells. MRBE induced apoptosis in MM cells, as evidenced by the increase in the population of annexin VFITC-positive cells and caspase-3/7 activity. We identified ursolic acid in MRBE through LC/mass spectrum (MS) and observed that it also decreased intracellular β-catenin, c-myc, and cyclin D1 levels. Furthermore, it suppressed the proliferation of RPMI-8226 cells by stimulating cell cycle arrest and apoptosis. These findings suggest that MRBE and its active ingredient, ursolic acid, exert antiproliferative activity by promoting the degradation of β-catenin and may have significant chemopreventive potential against MM.

Study on Physiologically Active Compounds and Antioxidant Activity of Korean Yam (Dioscorea batatas DECNE.)

  • Duan, Yishan;Kim, Gyeong-Hwuii;Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.342-351
    • /
    • 2016
  • The bioactive compound and antioxidant property of Korean yam (Dioscorea batatas DECNE.) were studied using in vitro methods. Yam available in Korea was analyzed for lycopene, chlorophyll a, b, tannin, phytic acid and total saponin contents. 70% Methanol, 70% ethanol and chloroform-methanol mixture (CM, 2:1, v/v) were used to extract yam. Then the antioxidant activity evaluated through ferrous ion chelating activity, ${\beta}$-carotene bleaching method, lipid peroxidation inhibition and nitric oxide (NO) radical scavenging activity. 70% Methanol extract showed the highest ferrous ion chelating activity and NO radical scavenging activity. And CM extract was the most effective in inhibition of linoleic acid peroxidation evaluated by ${\beta}$-carotene bleaching assay and lipid peroxidation inhibition assay. Based on the results obtained, yam is a potential active ingredient that could be applied in antioxidation as well as bio-health functional food to take a good part in prevention of human diseases and aging.

Memory-improving Effects of Fermented Sea Tangle Saccharina japonica in Normal Mice (정상 동물모델에서 다시마(Saccharina japonica) 발효물의 기억력 개선 효과)

  • Ryu, Jehkwang;Jo, Young-Hong;Chang, Seong-Jun;Lee, Bae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.2
    • /
    • pp.131-136
    • /
    • 2016
  • Marine organisms are sources of many bioactive compounds, such as essential fatty acids, essential amino acids, vitamins, and minerals, making them useful candidates for the production of safe bioactive substances. They also synthesize glutamic acid, which can be used to produce γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system (CNS), via fermentation with Lactobacillus brevis BJ-20. This study investigated the degree to which fermented sea tangle (FST) inhibits enzymes such as acetylcholine esterase (AChE) and prolyl endopeptidase (PEP) and affects memory of normal mice using the T-maze test. FST inhibited more than 90% of AChE at 1 mg/mL and 50% of PEP at 8 mg/mL. Oral FST (100 mg/kg) significantly improved performance of normal mice on the T-maze. Therefore, sea tangle fermented with L. brevis BJ20 effectively contributes to memory improvement and might be a useful functional food ingredient.

Ginsentology II: Chemical Structure-Biological Activity Relationship of Ginsenoside

  • Lee, Byung-Hwan;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.31 no.2
    • /
    • pp.69-73
    • /
    • 2007
  • Since chemical structures of ginsenoside as active ingredient of Panax ginseng are known, accumulating evidence have shown that ginsenoside is one of bio-active ligands through the diverse physiological and pharmacological evaluations. Chemical structures of ginsenoside could be divided into three parts depending on diol or triol ginsenoside: Steroid- or cholesterol-like backbone structure, carbohydrate portions, which are attached at the carbon-3, -6 or -20, and aliphatic side chain coupled to the backbone structure at the carbon-20. Ginsenosides also exist as stereoisomer at the carbon-20. Bioactive ligands usually exhibit the their structure-function relationships. In ginsenosides, there is little known about the relationship of chemical structure and biological activity. Recent reports have shown that ginsenoside $Rg_3$, one of active ginsenosides, exhibits its differential physiological or pharmacological actions depending on its chemical structure. This review will show how ginsenoside $Rg_3$, as a model compound, is functionally coupled to voltage-gated ion channel or ligand-gated ion channel regulations in related with its chemical structure.

Structure Characterization and Antihypertensive Effect of an Antioxidant Peptide Purified from Alcalase Hydrolysate of Velvet Antler

  • Seung Tae Im;Seung-Hong Lee
    • Food Science of Animal Resources
    • /
    • v.43 no.1
    • /
    • pp.184-194
    • /
    • 2023
  • Recently, interest in food-derived bioactive peptides as promising ingredients for the prevention and improvement of hypertension is increasing. The purpose of this study was to determine the structure and antihypertensive effect of an antioxidant peptide purified from velvet antler in a previous study and evaluate its potential as a various bioactive peptide. Molecular weight (MW) and amino acid sequences of the purified peptide were determined by quadrupole time-of-flight electrospray ionization mass spectroscopy. The angiotensin I-converting enzyme (ACE) inhibition activity of the purified peptide was assessed by enzyme reaction methods and in silico molecular docking analysis to determine the interaction between the purified peptide and ACE. Also, antihypertensive effect of the purified peptide in spontaneously hypertensive rats (SHRs) was investigated. The purified antioxidant peptide was identified to be a pentapeptide Asp-Asn-Arg-Tyr-Tyr with a MW of 730.31 Da. This pentapeptide showed potent inhibition activity against ACE (IC50 value, 3.72 μM). Molecular docking studies revealed a good and stable binding affinity between purified peptide and ACE and indicated that the purified peptide could interact with HOH2570, ARG522, ARG124, GLU143, HIS387, TRP357, and GLU403 residues of ACE. Furthermore, oral administration of the pentapeptide significantly reduced blood pressure in SHRs. The pentapeptide derived from enzymatic hydrolysate of velvet antler is an excellent ACE inhibitor. It might be effectively applied as an animal-based functional food ingredient.

Increasing Sulforaphane Formation in Broccoli Sprouts by Radish Sprouts Additions

  • Gi-Chang Kim;Mi Jang;Hab-Hwa Beak;In-Guk Hwang;Hae-Ju Kang;Byung-Soon Hwang;Ji-Young Kim;Chan-Mi Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.78-78
    • /
    • 2020
  • Cruciferous plants such as broccoli and radish contain glucosinolate, which is a bioactive precursor that is most often used in Korean foods and is unique as a food ingredient. In addition, it contains various other phytochemicals and is promising as a health-oriented food material. In particular, Sulforaphane is a hydrolyzate of the glucosinolate, which has a more beneficial effect on the human body. Glucosinolate may be hydrolyzed by enzymes called myrosinase, which is voluntarily possessed by cruciferous plants. However, the ESP(Epithiospecifier protein) in broccoli sprouts could acts competitively with myrosinase, and convert to the less bioactive sulforaphane nitrile form. Therefore, we improved the yielding of sulforaphane in broccoli sprouts with a new method. We induce inactivation of the ESP protein by heat treatment. At this time, a myrosinase was introduced from the radish sprout because myrosinase in broccoli sprouts is also denatured by heat treatment. According to the results, we have confirmed by GC / MS that formation of sulforaphane increases more than 7 fold using set heating and mixing conditions.

  • PDF