• Title/Summary/Keyword: bio-potential

Search Result 1,477, Processing Time 0.031 seconds

Changes and Perspects in the Regulation on Medical Device Approval Report Review, etc. : Focus on Traditional Korean Medical Devices (의료기기 허가·신고·심사 등에 관한 규정 변화와 전망 : 한의 의료기기 중심으로)

  • DaeJin Kim;Byunghee Choi;Taeyeung Kim;Sunghee Jung;Woosuk Kang
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.31-42
    • /
    • 2024
  • Objective : In order to understand the changes in domestic approval regulations applicable to traditional Korean medical device companies, this article will explain the major amendments 「Regulation on Medical Device Approval Report Review, etc.」 from 2005 to the present on a year-by-year basis, and provide a counter plan to the recent changes in approval regulations. Methods : We analysed the changes in approval regulatory amendments related to the traditional Korean medical devices from 2005 to the present. Results : The Ministry of Food and Drug Safety is continuously improving medical device approval regulations to ensure the global competitiveness of domestic medical devices and contribute to the improvement of public health. Recent major approval regulatory amendments include the establishment of a review system for software medical devices and digital therapeutics, the recognition of real world evidence materials, the introduction of a biological evaluation of medical devices within a risk management process and a medical device approval licence renewal system. Conclusions : It is expected that the range of medical devices available to Korean medicine doctors will continue to expand in the future through the provision of non-face-to-face medical services and the development of advanced and new medical devices, as well as wearable medical devices and digital therapeutics. In order to increase the market entry potential of traditional Korean medical devices that incorporate advanced technologies such as digital technology and AI-based diagnosis and prediction technology, it is urgent that the government provide significant support to traditional Korean medical device companies to improve approval regulatory compliance.

Vest-type System on Machine Learning-based Algorithm to Detect and Predict Falls

  • Ho-Chul Kim;Ho-Seong Hwang;Kwon-Hee Lee;Min-Hee Kim
    • PNF and Movement
    • /
    • v.22 no.1
    • /
    • pp.43-54
    • /
    • 2024
  • Purpose: Falls among persons older than 65 years are a significant concern due to their frequency and severity. This study aimed to develop a vest-type embedded artificial intelligence (AI) system capable of detecting and predicting falls in various scenarios. Methods: In this study, we established and developed a vest-type embedded AI system to judge and predict falls in various directions and situations. To train the AI, we collected data using acceleration and gyroscope values from a six-axis sensor attached to the seventh cervical and the second sacral vertebrae of the user, considering accurate motion analysis of the human body. The model was constructed using a neural network-based AI prediction algorithm to anticipate the direction of falls using the collected pedestrian data. Results: We focused on developing a lightweight and efficient fall prediction model for integration into an embedded AI algorithm system, ensuring real-time network optimization. Our results showed that the accuracy of fall occurrence and direction prediction using the trained fall prediction model was 89.0% and 78.8%, respectively. Furthermore, the fall occurrence and direction prediction accuracy of the model quantized for embedded porting was 87.0 % and 75.5 %, respectively. Conclusion: The developed fall detection and prediction system, designed as a vest-type with an embedded AI algorithm, offers the potential to provide real-time feedback to pedestrians in clinical settings and proactively prepare for accidents.

Physicochemical properties and physiological activity of bean sprouts extract containing Hovenia dulcis Thunb concentrates

  • Ji-An Heo;Wool-Lim Park;Hye-Ji Min;Jeong-Ho Kim;Yeong-Seon Won;Kwon-Il Seo
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.617-629
    • /
    • 2023
  • Reactive oxygen species are the byproducts of metabolic processes in the body, However, excessive amount may cause side effects such as cancer. Therefore, to reduce the production of these species, but their long-term administration at high doses may induce side effects. Hence, natural materials with antioxidant activities are attracting attention. Two of these natural materials are soybean sprouts and Hovenia dulcis Thunb. fruits, but few studies have evaluated the effects of their combination. Thus, we prepared a soybean sprout extract containing 1.5% H. dulcis Thunb. fruit concentrate (BHM) to develop a functional food material derived from natural products and then confirmed its physicochemical properties and physiological activity. Among the organic acids detected in BHM, malic acid exhibited the highest content of 1,451.03 ppm, and the main free sugars were glucose (645.48 ppm) and fructose (738.11 ppm). Taurine was the most abundant free amino acid at a concentration of 11.95 ppm, followed by those of arginine (10.97 ppm) and glutamic acid (10.16 ppm). Analyses of the mineral components revealed large amounts of Zn and Fe in BHM, and the respective total polyphenol and flavonoid contents in BHM were 957.16 and 601.93 ppm. The DPPH radical and H2O2 scavenging activities and reducing power indicated excellent antioxidant efficacy compared to the positive controls. Furthermore, blood alcohol and acetaldehyde concentrations were measured to confirm the hangover-relieving effects of BHM, with both significantly decreased (p<0.05). BHM displays potential for development as a functional food, and the results of this study may be used as basic data in further research.

Mitofusin-2 Promotes the Epithelial-Mesenchymal Transition-Induced Cervical Cancer Progression

  • Sung Yong Ahn;Jiwon Song;Yu Cheon Kim;Myoung Hee Kim;Young-Min Hyun
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.30.1-30.12
    • /
    • 2021
  • High expression of mitofusin-2 (MFN2), a mitochondrial fusion protein, has been frequently associated with poor prognosis of patients with cervical cancer. Here, we aimed to identify the function of MFN2 in cervical cancer to understand its influence on disease prognosis. To this end, from cervical adenocarcinoma, we performed an MTT assay and quantitative RT-PCR (qRT-PCR) analysis to assess the effects of MFN2 on the proliferation and of HeLa cells. Then, colony-formation ability and tumorigenesis were evaluated using a tumor xenograft mouse model. The migration ability related to MFN2 was also measured using a wound healing assay. Consequently, epithelial-mesenchymal transition (EMT) of MFN2-knockdowned HeLa cells originating from adenocarcinoma. markers related to MFN2 were assessed by qRT-PCR. Clinical data were analyzed using cBioPortal and The Cancer Genome Atlas. We found that MFN2 knockdown reduced the proliferation, colony formation ability, migration, and in vivo tumorigenesis of HeLa cells. Primarily, migration of MFN2-knockdowned HeLa cells decreased through the suppression of EMT. Thus, we concluded that MFN2 facilitates cancer progression and in vivo tumorigenesis in HeLa cells. These findings suggest that MFN2 could be a novel target to regulate the EMT program and tumorigenic potential in HeLa cells and might serve as a therapeutic target for cervical cancer. Taken together, this study is expected to contribute to the treatment of patients with cervical cancer.

Systems Pharmacological Analysis of Dichroae Radix in Anti-Tumor Metastasis Activity (시스템 약리학적 분석에 의한 상산의 암전이 억제 효과)

  • Jee Ye Lee;Ah Yeon Shin;Hak Koon Kim;Won Gun An
    • Herbal Formula Science
    • /
    • v.31 no.4
    • /
    • pp.295-313
    • /
    • 2023
  • Objectives : While treatments for cancer are advancing, the development of effective treatments for cancer metastasis, the main cause of cancer patient death, remains insufficient. Recent studies on Dichroae Radix have revealed that its active ingredients have the potential to inhibit cancer metastasis. This study aimed to investigate the cancer metastasis inhibitory effect of Dichroae Radix using network pharmacological analysis. Methods : The active compounds of Dichroae Radix have been identified using Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. The UniProt database was used to collect each of information of all target proteins associated with the active compounds. To find the bio-metabolic processes associated with each target, the DAVID6.8 Gene Functional classifier tool was used. Compound-Target and Target-Pathway networks were analyzed via Cytoscape 3.40. Results : In total, 25 active compounds and their 62 non-redundant targets were selected through the TCMSP database and analysis platform. The target genes underwent gene ontology and pathway enrichment analysis. The gene list applied to the gene ontology analysis revealed associations with various biological processes, including signal transduction, chemical synaptic transmission, G-protein-coupled receptor signaling pathways, response to xenobiotic stimulus, and response to drugs, among others. A total of eleven genes, including HSP90AB1, CALM1, F2, AR, PAKACA, PTGS2, NOS2, RXRA, ESR1, ESR2, and NCOA1, were found to be associated with biological pathways related to cancer metastasis. Furthermore, nineteen of the active compounds from Dichroae Radix were confirmed to interact with these genes. Conclusions : The results provide valuable insights into the mechanism of action and molecular targets of Dichroae Radix. Notably, Berberine, the main active ingredient of Dichroae Radix, plays a significant role in degrading AR proteins in advanced prostate cancer. Further studies and validations can provide crucial data to advance cancer metastasis prevention and treatment strategies.

Animal protein hydrolysate reduces visceral fat and inhibits insulin resistance and hepatic steatosis in aged mice

  • Su-Kyung Shin;Ji-Yoon Lee;Heekyong R. Bae;Hae-Jin Park;Eun-Young Kwon
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.46-61
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: An increasing life expectancy in society has burdened healthcare systems substantially because of the rising prevalence of age-related metabolic diseases. This study compared the effects of animal protein hydrolysate (APH) and casein on metabolic diseases using aged mice. MATERIALS/METHODS: Eight-week-old and 50-week-old C57BL/6J mice were used as the non-aged (YC group) and aged controls (NC group), respectively. The aged mice were divided randomly into 3 groups (NC, low-APH [LP], and high-APH [HP] and fed each experimental diet for 12 weeks. In the LP and HP groups, casein in the AIN-93G diet was substituted with 16 kcal% and 24 kcal% APH, respectively. The mice were sacrificed when they were 63-week-old, and plasma and hepatic lipid, white adipose tissue weight, hepatic glucose, lipid, and antioxidant enzyme activities, immunohistochemistry staining, and mRNA expression related to the glucose metabolism on liver and muscle were analyzed. RESULTS: Supplementation of APH in aging mice resulted in a significant decrease in visceral fat (epididymal, perirenal, retroperitoneal, and mesenteric fat) compared to the negative control (NC) group. The intraperitoneal glucose tolerance test and area under the curve analysis revealed insulin resistance in the NC group, which was alleviated by APH supplementation. APH supplementation reduced hepatic gluconeogenesis and increased glucose utilization in the liver and muscle. Furthermore, APH supplementation improved hepatic steatosis by reducing the hepatic fatty acid and phosphatidate phosphatase activity while increasing the hepatic carnitine palmitoyltransferase activity. Furthermore, in the APH supplementation groups, the red blood cell (RBC) thiobarbituric acid reactive substances and hepatic H2O2 levels decreased, and the RBC glutathione, hepatic catalase, and glutathione peroxidase activities increased. CONCLUSIONS: APH supplementation reduced visceral fat accumulation and alleviated obesity-related metabolic diseases, including insulin resistance and hepatic steatosis, in aged mice. Therefore, high-quality animal protein APH that reduces the molecular weight and enhances the protein digestibility-corrected amino acid score has potential as a dietary supplement for healthy aging.

Korean Red Ginseng extract ameliorates demyelination by inhibiting infiltration and activation of immune cells in cuprizone-administrated mice

  • Min Jung Lee;Jong Hee Choi;Tae Woo Kwon;Hyo-Sung Jo;Yujeong Ha;Seung-Yeol Nah;Ik-Hyun Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.672-680
    • /
    • 2023
  • Background: Korean Red Ginseng (KRG), the steamed root of Panax ginseng, has pharmacological activities for immunological and neurodegenerative disorders. But, the role of KRGE in multiple sclerosis (MS) remains unclear. Purpose: To determine whether KRG extract (KRGE) could inhibit demyelination in corpus callosum (CC) of cuprizone (CPZ)-induced murine model of MS Methods: Male adult mice were fed with a standard chow diet or a chow diet supplemented with 0.2% (w/w) CPZ ad libitum for six weeks to induce demyelination while were simultaneously administered with distilled water (DW) alone or KRGE-DW (0.004%, 0.02 and 0.1% of KRGE) by drinking. Results: Administration with KRGE-DW alleviated demyelination and oligodendrocyte degeneration associated with inhibition of infiltration and activation of resident microglia and monocyte-derived macrophages as well as downregulation of proinflammatory mediators in the CC of CPZ-fed mice. KRGE-DW also attenuated the level of infiltration of Th1 and Th17) cells, in line with inhibited Mrna expression of IFN-γ and IL-17, respectively, in the CC. These positive effects of KRGE-DW mitigated behavioral dysfunction based on elevated plus maze and the rotarod tests. Conclusion: The results strongly suggest that KRGE-DW may inhibit CPZ-induced demyelination due to its oligodendroglial protective and anti-inflammatory activities by inhibiting infiltration/activation of immune cells. Thus, KRGE might have potential in therapeutic intervention for MS.

Heat-Treated Paraprobiotic Latilactobacillus sakei KU15041 and Latilactobacillus curvatus KU15003 Show an Antioxidant and Immunostimulatory Effect

  • Jun-Hyun Hyun;Im-Kyung Woo;Kee-Tae Kim;Young-Seo Park;Dae-Kyung Kang;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.358-366
    • /
    • 2024
  • The lactic acid bacteria, including Latilactobacillus sakei and Latilactobacillus curvatus, have been widely studied for their preventive and therapeutic effects. In this study, the underlying mechanism of action for the antioxidant and immunostimulatory effects of two strains of heat-treated paraprobiotics was examined. Heat-treated L. sakei KU15041 and L. curvatus KU15003 showed higher radical scavenging activity in both the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays than the commercial probiotic strain LGG. In addition, treatment with these two strains exhibited immunostimulatory effects in RAW 264.7 macrophages, with L. curvatus KU15003 showing a slightly higher effect. Additionally, they promoted phagocytosis and NO production in RAW 264.7 cells without any cytotoxicity. Moreover, the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 was upregulated. These strains resulted in an increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the nuclear factor-κB and mitogen-activated protein kinase signaling pathways were stimulated by these strains. These findings suggest the potential of using L. sakei KU15041 and L. curvatus KU15003 in food or by themselves as probiotics with antioxidant and immune-enhancing properties.

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.

Effect of Salt Concentration in Soil on the Growth, Yield, Photosynthetic Rate, and Mineral Uptake of Tomato in Protected Cultivation (토양 염류농도가 시설토마토의 생육, 수량, 광합성속도 및 무기양분 흡수에 미치는 영향)

  • Rhee, Han-Cheol;Cho, Myeung-Whan;Lee, Si-Young;Choi, Gyeong-Lee;Lee, Jae-Han
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.328-332
    • /
    • 2007
  • This study was conducted to investigate the effects of high concentrations of salts in soil on the growth, yield, quality, photosynthetic rate, and mineral uptake of tomato ('House Momotaro') in pot cultivation. The growth of tomato such as plant height, top plant weight and root weight decreased as the concentrations of salts in soils increased. Yield decreased by 31% and 41% in EC 5.0 and $7.5dS{\cdot}m^{-1}$, respectively compared with the salt concentration of EC $1.5dS{\cdot}m^{-1}$. Yield reduction was caused by low mean weight and number of fruit if at high salt concentration in soil, and affected by low photosynthetic rate and water potential in leaf, The rate of blossom-end rot was highest (16.7%) in EC $7.5dS{\cdot}m^{-1}$ and increased as the concentrations of salts in soils increased. The contents of soluble solids and titratable acids showed a tendency to increase with increasing the concentrations of salts in soils. Photosynthetic rate, water potential and stomatal conductance in leaf decreased as the salt concentration in soil increased. The higher the salt concentration in soil, the lower the mineral uptake such as T-N, P, K, Ca and Mg but, the higher the content of Na.