• Title/Summary/Keyword: bio technology

Search Result 5,501, Processing Time 0.04 seconds

A Study on the Regional Distribution Characteristics and Innovation Activity Performance of Bio-Industry in Korea: Focusing on Metropolitan and Non-metropolitan Areas (국내 바이오산업의 지역별 분포특성과 혁신 활동 성과에 관한 연구: 수도권과 비수도권 지역을 중심으로)

  • Min Jung Yu;Gyu Ha Ryu
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.225-241
    • /
    • 2023
  • The study empirically analyzed the differences in industry distribution and innovation activity performance in the metropolitan and non-metropolitan areas of Korea's bio companies, which are highlighted as future growth engines. The main innovation activities of the bio industry, which are focused on science and technology and expressed with high uncertainty, were analyzed, centering on human resources, technology cooperation, and investment promotion. As a result of the analysis, the biomedical industry in the metropolitan area was found to have a high proportion, and bio foods, bio-based chemicals, and energy industries in the non-metropolitan area, respectively. Moreover, the innovation activity performances differed between the two regions. In particular, the notable characteristics included human resources, investment promotion, and technical cooperation with medical institutions in the metropolitan area with a high proportion of biomedical industries, and technology personnel exchange and cooperation with private research institutions in the non-metropolitan area, which has a high proportion of bio foods, bio-based chemicals, and energy industries. This study is significant in that it is the first study to compare and analyze the performance of innovative activities based on the distribution of industries in the bio-industry, focusing on human resources, technology cooperation, and investment promotion. In addition, after investigating the distribution status and competitiveness of the domestic bio-industry by region, it will analyze the status and characteristics of the domestic bio-industry and present policy implications to implement relevant promotion policy more efficiently.

A Study on the Steam Reforming Reaction of DME on Cu/ZnO/Al2O3 Catalyst for Hydrogen Production (수소 생산을 위한 Cu/ZnO/Al2O3 촉매상에서 DME의 수증기 개질 반응 연구)

  • HYUNSEUNG BYUN;YUNJI KU;JUHEE OH;JAESUNG BAN;YOUNGJIN RAH;JESEOL LEE;WONJUN CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.581-586
    • /
    • 2023
  • As the development of alternative energy is required due to the depletion of fossil fuels, interest in the use of hydrogen energy is increasing. Hydrogen is a promising clean energy source with high energy density and can lead to the application of environmentally friendly technologies. However, due to difficulties in production, storage, and transportation that prevent the application of hydrogen-based eco-friendly technology, research on reforming reactions using dimethyl ether (DME) is being conducted. Unlike other hydrocarbons, DME is attracting attention as a hydrogen carrier because it has excellent storage stability and transportability, and there is no C-C bond in the molecule. The reaction between DME and steam is one of the reforming processes with the highest hydrogen yield in theory at a temperature lower than that of other hydrocarbons. In this study, a hydrogen reforming device using DME was developed and a catalyst prepared by supporting Cu in alumina was put into a reactor to find optimal hydrogen production conditions for supplying hydrogen to fuel cells while changing reaction temperature (300-500℃), pressure (5-10 bar), and steam/carbon ratio (3:1 to 5:1).