• Title/Summary/Keyword: binding site

Search Result 1,023, Processing Time 0.029 seconds

Contribution of Second Metal Binding Site for Metal Specificity of D-Xylose Isomerase

  • Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.757-763
    • /
    • 1999
  • The metal specificity of D-xylose isomerase from Streptomyces rubiginosus was examined by site-directed mutagenesis. The activation constants for metal ion ($Mg^{2+},{\;}Mn^{2+},{\;}or{\;}Co^{2+}$) of wild-type and mutant enzymes were determined by titrating the metal ion-free enzyme with $Mg^{2+},{\;}Mn^{2+},{\;}and{\;}Co^{2+}$, respectively. Substitutions of amino acids either on coordinated or around the M2 site (His-22O, Asn-185, Glu-186, and Glu-221) dramatically affected the activation constants as well as activity. A decrease of metal binding affinity was most significant in the presence of $Mg^{2+}$. When compared with the wild-type enzymes, the binding affinity of H220S and Nl85K for Mg^{2+} was decreased by 10-15-fold, while the affinity for $Mn^{2+}{\;}or{\;}Co^{2+}$ only decreased by 3-5-fold. All the mutations close to the M2 site changed their metal preference from $Mg^{2+}{\;}to{\;}Mn^{2+}{\;}or{\;}Co^{2+}$. These altered metal preferences may be caused by a relatively weak binding affinity of $Mg^{2+}$ to the enzyme. Thermal inactivation studies of mutants at the M2 site also support the importance of the M2 site geometry for metal specificity as well as the thermostability of the enzyme. Mutations of other important groups hardly affected the metal preference, although pronounced effects on the kinetic parameters were sometimes observed. This study proposes that the metal specificity of D-xylose isomerase can be altered by the perturbation of the M2 site geometry, and that the different metal preference of Group I and GroupII D-xylose isomerases may be caused by nonconserved amino acid residues around the M2 site.

  • PDF

HBV Polymerase Residues $Asp^{429}$ and $Asp^{551}$, Invariant at Motifs A and C are Essential to DNA Binding

  • Kim, Youn-Hee;Hong, Young-Bin;Jung, Gu-Hung
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.498-502
    • /
    • 1998
  • HBV polymerase shares several regions of amino acid homology with other DNA-directed and RNA-directed polymerases. The amino acid residues $Asp^{429}$, $Gly^{518}$, $Asp^{551}$, $Lys^{585}$, and $Gly^{641}$ in the conserved motifs A, B', C, D, and E in the polymerase domain of HBV polymerase were mutated to alanine or histidine by in vitro site-directed mutagenesis. Those mutants were overexpressed, purified, and analyzed against DNA-dependent DNA polymerase activity and affinity for DNA binding. All those mutants did not show DNA-dependent DNA polymerase activities indicating that those five amino acid residues are all critical in DNA polymerase activity. South-Western analysis shows that amino acid residues $ASp^{429}$ and $ASp^{551}$ are essential to DNA binding, and $Gly^{318}$ and $Gly^{585}$ also affect DNA binding to a certain extent.

  • PDF

Molecular Pharmacological Interaction of Phenylbutazone to Human Neutrophil Elastase

  • Kang, Koo-Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.385-393
    • /
    • 1998
  • Human neutrophil elastase (HNElastase, EC 3.4.21.37), a causative factor of inflammatory diseases, was purified by Ultrogel AcA54 gel filtration and CM-Sephadex ion exchange chromatography. HNElastase was inhibited by phenylbutazone in a concentration dependent manner up to 0.4 mM, but as the concentration increased, the inhibitory effect gradually diminished. Binding of phenylbutazone to the human neutrophil elastase caused strong Raman shifts at 200, 440, and 1194 $cm^{-1}$. The peak at 1194 $cm^{-1}$ might be evidence of the presence $of\;-N=N-{\Phi}$ radical. The core area of the elastase, according to the visual molecular model of human neutrophil elastase, was structurally stable. A deeply situated active center was at the core area surrounded by hydrophobic amino acids. Directly neighboring the active site was one positively charged atom and two atoms carrying a negative charge, which enabled the enzyme and the drug to form a strong interaction. Phenylbutazone may form a binding, similar to a key & lock system to the atoms carrying opposite charges near the active site of the enzyme molecule. Furthermore, the hydrophobicity of the surrounding amino acid near the active site seemed to enhance the binding strength of phenylbutazone. Binding of phenylbutazone near the active site may cause masking of the active site, preventing the substrate from approaching the active site and inhibiting elastase activity.

  • PDF

EXAMINATION OF TYR-264 FOR ATPase ACTIVE SITE IN E.coli RecA PROTEIN BY SITE-DIRECTED MUTAGENESIS

  • Kwon, Yong-Kook;Bae, Jun-Seong;Hahn, Tae-Ryong
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.27-29
    • /
    • 1995
  • Site directed mutagenesis has been introduced to determine active site(s) and molecular structure of E. coli RecA protein. Recombinant DNAs were constructed by point mutation of Tyr-264 to Phe which assumed active site for binding and hydrolysis of ATP. RecA proteins were purified from recombinants containing wild type and mutant genes and analyzed for ATPase activity assay. Result suggests that Tyr-264 is involved in ATP binding rather than ATP hydrolysis.

  • PDF

Nucleotide and Deduced Amino Acid Sequences of Rat Myosin Binding Protein H (MyBP-H)

  • Jung, Jae-Hoon;Oh, Ji-Hyun;Lee, Kyung-Lim
    • Archives of Pharmacal Research
    • /
    • v.21 no.6
    • /
    • pp.712-717
    • /
    • 1998
  • The complete nucleotide sequence of the cDNA clone encoding rat skeletal muscle myosin- binding protein H (MyBP-H) was determined and amino acid sequence was deduced from the nucleotide sequence (GenBank accession number AF077338). The full-length cDNA of 1782 base pairs(bp) contains a single open reading frame of 1454 bp encoding a rat MyBP-H protein of the predicted molecular mass 52.7kDa and includes the common consensus 1CA__TG' protein binding motif. The cDNA sequence of rat MyBP-H show 92%, 84% and 41% homology with those of mouse, human and chicken, respectively. The protein contains tandem internal motifs array (-FN III-Ig C2-FN III- Ig C2-) in the C-terminal region which resembles to the immunoglobulin superfamily C2 and fibronectin type III motifs. The amino acid sequence of the C-terminal Ig C2 was highly conserved among MyBPs family and other thick filament binding proteins, suggesting that the C-terminal Ig C2 might play an important role in its function. All proteins belonging to MyBP-H member contains `RKPS` sequence which is assumed to be cAMP- and cGMP-dependent protein kinase A phosphorylation site. Computer analysis of the primary sequence of rat MyBP-H predicted 11 protein kinase C (PKC)phosphorylation site, 7 casein kinase II (CK2) phosphorylation site and 4N-myristoylation site.

  • PDF

Mechanism of Fatty Acid Transfer between Fatty Acid Binding Proteins and Phospolipid Model Membranes (지방산 결합단백질과 인지질막 사이의 지방산이동기전)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.8
    • /
    • pp.930-935
    • /
    • 1997
  • Fatty acid binging proteins(FABP) are distinct but related gene productes which are found in many mamalian cell types. FABP bind long chain fatty acids in vitro. However, their functions and mechanisms of action, in vivo, remain unknown . Also not known is whether all FABP function similaryly in their respective cell types. or whether different FABP have unique functions. The puropose of the present study was to assess whether different members of the FABP family exhibit different structural and function properties. A comparison was made between heart(H-FABP) and liver (L-FABP). The results show that the binding sites of both FABP are hydrophobic in nature, although the L-FABP site is more nonpolar than the H-FABP site. Additionally, the bound ligand experiences less motional constraint within the H-FABP binding site than within the L-FABP binding site. In accordance with these differences in structural properties, it was found that anthroyloxy-fatty acid transfer from H-FABP to membranes is markedly faster than from L-FABP. moreover, the mechanism of fatty acid transfer to phospholipid membranes appears to occur via transient collisional interactions between H-FABP and membranes. In contrast , transfer of fatty acid from L-FABP occurs via an aqueous diffusion mechanism.

  • PDF

The Effect of Dehydronifedipine on the Oxidation of Aflatoxin $B_1$ by Cytochrome P450 3A4 (Cytochrome P450 3A4에 의한 Aflatoxin $B_1$의 산화에 대한 Dehydronifedipine의 영향)

  • 김복량;권강범;김동현
    • Toxicological Research
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 1999
  • Cytochrome P450 (CYP) 3A4 metabolizes aflatoxin B1 (AFB1) to AFB1-exo-8,9-epoxide (8,9-epoxidation) and aflatoxin Q1 (AFQ1; 3$\alpha$-hydroxylation) simultaneously. We investigated whether each metabolite was formed via its own binding site of CAP3A4 active site. Kinetics of the formation of the two metabolites were sigmoidal and consistent with the kinetics of substrate activation. The HIll model predicted that two substrate binding wites are involved in the oxidationof AFB1 by CYP3A4. Dehydronifedipine, a metabolite of nifedipine generated by CYP3A4, inhibited the formation of AFQ1 without any inhibition in the formation of AFB1-exo-8,9-epoxidation. Dehydronifedipine was found to act as a reversible competitive inhibitor against 3$\alpha$-hydroxylation of AFB1. Vmax and S0.5 of the 8,9-epoxidation were not changed in the presence of 0, 50, or 100 $\mu\textrm{M}$ dehydronifedipine. S0.5 of 3$\alpha$-hydroxylation was increased from 58$\pm$4 $\mu\textrm{M}$ to 111$\pm$8 $\mu\textrm{M}$ in the presence of 100 $\mu\textrm{M}$ nifedipine whereas Vmax was not changed. These results suggest that there exist two independent binding sites in the active site of CAP3A4 . One binding site is responsible for AFB1-exo-8,9-epoxidation and the other is involved in 3$\alpha$-hydroxylation of AFB1. Dehydronifedipine might selectively bind to the site which is responsible for the formation of AFQ1 in the active site of CYP3A4.

  • PDF

Analysis of the Role of STAT Binding Site in the Drosophila raf Promoter Region Using Transgenic Flies (형질전환 초파리를 이용한 Drosophila raf 유전자 발현조절영역에 존재하는 STAT결합부위의 역할에 관한 연구)

  • Park, Hyun Sook;Kim, Young Shin;Kwon, Eun Jeong;Yoo, Mi Ae
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.50-57
    • /
    • 1999
  • STATs activated by various cytokine and growth factors trigger a quick response in the nucleus and induce changes in gene expression. We have found the sequences homologous to STAT binding site in the 5'-flanking region of the D-raf gene. In this study, we examined role of the STAT binding site in D-raf gene promoter activity in vivo by using transgenic flies. The reporter plasmid pDraf-STATmut-lacZ was constructed by fusing D-raf promoter fragment having the base-substituted STAT binding site with the lacZ gene in a P-element vector. Transgenic flies bearing the Draf-STATmut-lacZ fusion genes were established by P-element mediated transformation. The expression of lacZ in transgenic flies bearing Draf-STATmut-lacZ fusion genes carrying base substitution in STAT site throughout various developmental stages was extensively reduced in comparison with that in transgenic flies bearing wild type Draf-lacZ fusion gene. These results show that the STAT binding site plays an important role in regulation of the D-raf gene.

  • PDF

Characterization of Insulin-like Growth Factor-free Interaction between Insulin-like Growth Factor Binding Protein 3 and Acid Labile Subunit Expressed from Xenopus Oocytes

  • Choi, Kyung-Yi;Kyung, Yoon-Joo;Lee, Chul-Young;Lee, Dong-Hee
    • BMB Reports
    • /
    • v.37 no.2
    • /
    • pp.153-158
    • /
    • 2004
  • The acid-labile subunit (ALS) is known to interact with the IGF binding protein (IGFBP) in the presence of insulin-like growth factors (IGFs). Studies, however, indicate that ALS forms a doublet with IGFBP3, independent of IGFs. To characterize the structural domain required for the IGF-free ALS-IGFBP3 interaction, seven recombinant human IGFBP3 mutants were generated: three deletion mutants and four site-specific mutants that had altering N-terminal regions of IGFBP3. ALS and IGFBP3 mRNAs were co-injected into Xenopus oocytes, and their products were cross-linked and immunoprecipitated using antisera against ALS or IGFBP3. Among the deletion mutants, the mutant of D40 (deleted in 11-40th amino acids) exerted no effect in the interaction with ALS, while D60 (${\Delta}11$-60) demonstrated a moderate reduction. D88 (${\Delta}11$-88), however, showed a significant decrease. In the case of site-specific mutants, the mutation that alterated the IGF binding site (codons 56 or 80) exerted a significant reduction in the interaction, whereas codons 72 or 87 showed no significant change in the interaction with ALS. The stability of the ALS-IGFBP3 interaction was analyzed according to a time-dependent mode. Consistent with the binding study, mutants on the IGF binding sites (56 or 80) consistently show a weakness in the ALS-IGFBP3 interaction when compared to the mutants that covered the non-IGF binding sites (72 or 87). This study suggests that the N-terminal of IGFBP3, especially the IGF binding site, plays an important role in interacting with ALS as well as in stabilizing the dual complex, independent of IGFs.