• Title/Summary/Keyword: binding constant

Search Result 319, Processing Time 0.029 seconds

A Product Inhibition Study on Adenosine Deaminase by Spectroscopy and Calorimetry

  • Saboury, Ali Akbar;Divsalar, Adeleh;Jafari, Ghasem Ataie;Moosavi-Movahedi, Ali Akbar;Housaindokht, Mohammad Reza;Hakimelahi, Hosain
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.302-305
    • /
    • 2002
  • Kinetic and thermodynamic studies have been made on the effect of the inosine product on the activity of adenosine deaminase in a 50 mM sodium phosphate buffer, pH 7.5, at $27^{\circ}C$ using UV spectrophotometry and isothermal titration calorimetry (ITC). A competitive inhibition was observed for inosine as a product of the enzymatic reaction. A graphical-fitting method was used for determination of the binding constant and enthalpy of inhibitor binding by using isothermal titration microcalorimetry data. The dissociation-binding constant is equal to $140\;{\mu}M$ by the microcalorimetry method, which agrees well with the value of $143\;{\mu}M$ for the inhibition constant that was obtained from the spectroscopy method.

2D-QSAR Analyses on the Binding Affinity Constants of Tetrahydropyrane and Tetrahydrofurane Analogues against Bovine Odorant Binding Protein and Predicted of High Active Molecules (Bovine Ordorant Binding Protein에 대한 Tetrahydropyrane 및 Tetrahydrofurane 유도체들의 결합 친화력 상수에 관한 2D-QSAR 분석과 고활성 분자의 예측)

  • Park, Chang-Sik;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.119-123
    • /
    • 2009
  • The two dimensional quantitative structure-activity relationships (2D-QSARs) models concerning the binding affinity constants ($p[Od.]_{50}$) between 2-cyclohexyltetrahydropyrane and 2-cyclohexyltetrahydrofurane analogues as substrates, and bovine odorant binding protein (bOBP) as receptor were derived by multiple regression analyses method and discussed. The statistical quality of the optimized 2D-QSAR model (5) was good (r=0.907). From the model, the binding affinity constants ($p[Od.]_{50}$) were dependent upon the optimal value ($(TL)_{opt.}$=2.737) of total lipole (TL) of substrate molecules. Based on these findings, the high active compounds predicted by optimized 2D-QSAR model (5) were 2-(dimethylcyclohexyl)tetrahydropyrane molecule and their isomer molecules. The binding affinity constants regarding bOBP of the tetrahydrofuryl-2-yl family compounds were dependent upon the hydrophobicity (logP) of whole substrate molecules. In any case of porcine odorant-binding proteins (pOBP), the constants were dependent upon the hydrophobicity (${\pi}x={\log}P_X-{\log}P_H$) of substituents (R) in substrate molecules. Also, from the optimal values of hydrophobic constant, the hydrophobicity for bOBP influenced ca. twice time bigger (bOBP>pOBP) than that for pOBP.

The Search of Pig Pheromonal Odorants for Biostimulation Control System Technologies: A 2D-QSAR Model for Binding Affinity between 2-Cyclohexyloxytetrahydrofurane Analogues and Porcine Odorant Binding Protein (생물학적 자극 통제 수단으로 활용하기 위한 돼지 페로몬성 냄새 물질의 탐색: 2-Cyclohexyloxytetrahydrofurane 유도체와 Porcine Odorant Binding Protein 사이의 결합 친화력에 관한 2D-QSAR 모델)

  • Park, Chang-Sik;Choi, Yang-Seok;Sung, Nack-Do
    • Reproductive and Developmental Biology
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2007
  • To search of a new porcine pheromonal odorant for biostimulation control system technologies to offer a potentially useful and practical way to improve reproductive efficiency in livestock species, the two dimensional quantitative structure-activity relationship (QSAR) models between physicochemical parameters as descriptors of 2-cyclohexyloxytetrahydrofurane (A), 2-phenoxytetrahydrofurane (B) analogues and binding affinity constant ($p[Od.]_{50}$) for porcine odorant-binding protein (pOBP) as receptor of pig pheromones were derived and disscused. The statistical quality of the optimized 2D-QSAR model is good ($r^{2}=0.964$) and accounts for 96.4% of the variance in the binding affinity constants. It was found that the binding affinity constants were dependent upon the optimal value, $(SL)_{opt.}=1.418$ of substituent lipole (SL) in molecules. Therefore, the SL constant was very important factor for binding affinity.

Mass Spectrometric Determination of Zn2+ Binding/Dissociation Constant for Zinc Finger Peptides

  • Lee, Choong Sik;Park, Soo Jin;Lee, Jae Young;Park, Sungsu;Jo, Kyubong;Oh, Han Bin
    • Mass Spectrometry Letters
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2015
  • In the present study, we proposed a simple ESI-MS model for determining $Zn^{2+}$ binding (or dissociation) constants for zinc finger peptides (ZFPs) with a unique ${\beta}{\beta}{\alpha}$ fold consensus. The ionization efficiency (response) factors for this model, i.e., ${\alpha}$ and ${\beta}$, could be determined for ZiCo ZFP with a known $Zn^{2+}$ binding constant. We could determine the binding constants for other ZFPs assuming those with a ${\beta}{\beta}{\alpha}$ consensus conformation have the same ${\alpha}/{\beta}$ response ratio. In general, the ZPF dissociation constants exhibited $K_d$ values of $10^{-7}{\sim}10^{-9}M$, while $K_d$ values for a negative control non-specific $Zn^{2+}$ peptides were high, e.g., $5.5{\times}10^{-6}M$ and $4.3{\times}10^{-4}M$ for BBA1 and melittin, respectively.

Protein Binding Study of S-Ibuprofen Using High-Performance Frontal Analysis

  • Jin, Longmei;Choi, Du-Young;Liu, Haiyan;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.136-138
    • /
    • 2005
  • High-performance frontal analysis (HPFA) was used for the determination of the binding constant of Sibuprofen to human serum albumin (HSA). This experiment was based on an Inertsil 100 Diol 5 column and sodium phosphate buffer (pH 7.4 and ionic strength of 0.17) as the mobile phase. The mixture of S-ibuprofen and HSA (70 $\mu$M) solution were directly injected into the HPFA column. An injection volume of 200 $\mu$L and a “estricted injection”method were applied to ensure the drug to be eluted as a zonal peak with a plateau. The unbound drug concentration was calculated from the peak height of the zonal peak. Scatchard analysis was used for evaluation of the binding constant (K) and binding affinity (nK) of S-ibuprofen to HSA, and the results were K = 2.833 ${\times}$ 10$^4$ [L mol$^{-1}$], nK = 4.935 ${\times}$ 10$^4$ [L mol$^{-1}$], respectively.

A Study on the Diurnal Variation of Endorphin in Rat Brain (백서 뇌내 Endorphin의 일주기 변동에 관한 연구)

  • Jung, Chang-Young;Kim, Ki-Won;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.35-47
    • /
    • 1984
  • Contents of immunoreactive ${\beta}-endorphin$ and maximum of $^3H-morphine$ binding was measured in the rat midbrain homogenates from different subgroups at 24 hour interval over 24 hours. Animals were adapted to the light-dark cycle(L : D, 12: 12) or constant darkness (D : D, 12 : 12) for 3 weeks. After the adaptation, 0.5ml of physiologic saline or drug was administered twice a day for 2 weeks. A highly significant circadian rhythm with the peak$(94.8{\pm}7.7\;fmole/mg\;protein)$ at 06:00 and the nadir $(27.6{\pm}2.4\;fmole/mg\;protein)$ at 18:00 was observed in constant of group. Constant dark or treatment of reserpine, pargyline, imipramine, amphetamine and chlorpromazine modified the diurnal rhythm in the time of peak and nadir, shape, phase amplitude and 24 hour mean of ${\beta}-endorphin$ contents. Opiate receptor binding by $^3H-morphine$ also showed highly significant diurnal change in control and constant dark adapted rats. Statistical analysis by one-way analysis of variance and two-way analysis of variance indicates that the·re are highly significant differences between the diurnal change of ${\beta}-endorphin$ in control and those constant dark adapted and drug treated groups. However diurnal change of Maximum $^3H-morphine$ binding is closely related to the change of ${\beta}-endorphin$ contents. The results are interpreted with regard to the circadian rhythm of beta-endorphin contents, its modification by psychoactive drugs and possible mechanism of diurnal change of opiate receptor in brain.

  • PDF

Interaction Analysis of Small Molecules with Polymers( I ) - Interaction between Poly(vinyl pyrrolidone) and Methylene Blue in Homogeneous Systems- (고분자와 저분자의 상호작용의 해석 ( I ) -균일수용액계에서의 Poly(vinyl pyrrolidone)과 Methylene Blue의 상호작용-)

  • 박수민;김문식;유정문
    • Textile Coloration and Finishing
    • /
    • v.5 no.3
    • /
    • pp.182-187
    • /
    • 1993
  • The binding isotherms of Methylene Blue with Poly(vinyl pyrrolidone) (PVP) were determined in a Mcllvaine buffer of pH 8.0 at 3$0^{\circ}C$ by a dynamic dialysis methods. The isotherms showed a partition binding which was increase linearly with the increase of free dye concentration in solution. The Scatchard plots for Poly(vinyl pyrrolidone)-Methylene Blue gave a constant value. The results were interpreted by the McGhee and von Hippel theory considering non-cooperative binding. The intrinsic binding constant k, for Poly(vinyl pyrrolidone)-Methylene Blue was 6.02$\ell$/base mol.

  • PDF

QFPR Analysis for Selectivity of between Na+ and Li+ Ions to 12-Crown-4: by a Monte Carlo Simulation Study

  • Kim, Hag-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2823-2829
    • /
    • 2010
  • We investigated the solvent effects on the relative free energies of binding of $Na^+$ and $Li^+$ ions to 12-crown-4 and ${\Delta}log\;K_s$ (the difference of stability constant of binding) by a Monte Carlo simulation of statistical perturbation theory (SPT) in several solvents. Comparing the relative free energies of binding of $Na^+$ and $Li^+$ ions to 12-crown-4, in $CH_3OH$ of this study with experimental works, there is a good agreement among the studies. We have reported the quantitative free energy polarity (of solvent) relationships (QFPR) of the relationship between the relative free energies and solvent polarity studied on the solvent effects on the relative free energies of binding of $Na^+$ and $Li^+$ ions to 12-crown-4.

Mass spectrometric studies of competitive binding of C60 and C70 to mesosubstituted porphyrins

  • Jung, Sung-Han;Shin, Seung-Koo
    • Mass Spectrometry Letters
    • /
    • v.2 no.2
    • /
    • pp.49-52
    • /
    • 2011
  • Competitive binding of $C_{60}$ and $C_{70}$ to meso-substituted porphyrins was studied by mass spectrometry (MS). Electrospray ionization MS was employed to acquire the mass spectra of 1 : 1 porphyrin-fullerene complexes formed in a mixture of mesosubstituted porphyrin and fullerite to determine the ratio of complexes between $C_{60}$ and $C_{70}$. Matrix-free laser desorption ionization MS was used to obtain the mass spectra of fullerite to measure the mole fraction of $C_{60}$ and $C_{70}$. The binding constant ratio ($K_{70}$/$K_{60}$) was determined from the mass spectral data. The difference in standard Gibbs free energy change, ${\Delta}({\Delta}G^o)_{70-60}$, for the competitive binding of $C_{60}$ and $C_{70}$ was calculated from $K_{70}$/$K_{60}$. Of the five porphyrins, tetraphenyl, tetra(4-pyridyl), tetra(4-carboxyphenyl), tetra(3,5-di-tert-butylphenyl), and tetra(pentafluorophenyl) porphyrins, the first three non-bulky porphyrins yield negative values of ${\Delta}({\Delta}G^o)_{70-60}$, whereas the other two bulky porphyrins result in positive values of ${\Delta}({\Delta}G^o)_{70-60}$. This result indicates that $C_{70}$ binding to porphyrin is thermodynamically favored over $C_{60}$ binding in non-bulky porphyrins, but disfavored in bulky ones. It also suggests that the binding mode of $C_{70}$is different between non-bulky and bulky porphyrins, which is in line with previous experimental findings of the "side-on" binding to non-bulky porphyrins and the $C_{60}$-like "end-on" binding to bulky porphyrins.