• 제목/요약/키워드: binary feature

검색결과 361건 처리시간 0.026초

부분 해밍 거리의 순차적 분석을 통한 이진 특징 기술자의 고속 정합에 관한 연구 (A Study on Fast Matching of Binary Feature Descriptors through Sequential Analysis of Partial Hamming Distances)

  • 박한훈;문광석
    • 융합신호처리학회논문지
    • /
    • 제14권4호
    • /
    • pp.217-221
    • /
    • 2013
  • 최근, 이진 특징 기술자를 생성하는 방법에 대한 연구가 많이 진행되고 있다. 이진 특징 기술자의 정합은 비트 연산에 기반한 해밍거리를 이용하므로 실수 연산에 기반한 유클리디안 거리를 이용하는 기존의 일반적인 특징 기술자의 정합보다 훨씬 효율적이기 때문이다. 그러나, 특징 수의 증가는 정합 속도를 선형적으로 감소시키는 원인이 되기 때문에, 객체 추적과 같은 실시간 처리가 중요한 응용 분야에서는 이진 특징 기술자의 정합 속도를 더욱 향상시킬 수 있는 방법에 대한 요구가 증가해 왔다. 이에 본 논문에서는 고차원의 이진 특징 기술자를 여러 저차원의 이진 특징 기술자로 나누어 부분 해밍거리를 계산하고 순차적으로 분석함으로써, 정합 속도는 크게 개선하면서도 정확도는 유지할 수 있는 방법을 제안한다. 제안된 방법의 효율성을 분석하기 위해 기존의 정합 방법들과의 비교 실험을 수행한다. 아울러, 제안된 고속화 방법의 성능을 극대화하기 위한 이진 특징 기술자 생성 방법에 대해서도 논의한다. 몇가지 생성 방법에 대한 성능을 분석함으로써, 가장 효과적인 방법을 모색한다.

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

유전 알고리즘을 이용한 이진 결정 트리의 설계와 영문자 인식에의 응용 (A design of binary decision tree using genetic algorithms and its application to the alphabetic charcter)

  • 정순원;김경민;박귀태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.218-223
    • /
    • 1995
  • A new design scheme of a binary decision tree is proposed. In this scheme a binary decision tree is constructed by using genetic algorithm and FCM algorithm. At each node optimal or near-optimal feature or feature subset among all the available features is selected based on fitness function in genetic algorithm which is inversely proportional to classification error, balance between cluster, number of feature used. The proposed design scheme is applied to the handwtitten alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

상호정보량과 Binary Particle Swarm Optimization을 이용한 속성선택 기법 (Feature Selection Method by Information Theory and Particle S warm Optimization)

  • 조재훈;이대종;송창규;전명근
    • 한국지능시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.191-196
    • /
    • 2009
  • 본 논문에서는 BPSO(Binary Particle Swarm Optimization)방법과 상호정보량을 이용한 속성선택기법을 제안한다. 제안된 방법은 상호정보량을 이용한 후보속성부분집합을 선택하는 단계와 BPSO를 이용한 최적의 속성부분집합을 선택하는 단계로 구성되어 있다. 후보속성부분집합 선택 단계에서는 독립적으로 속성들의 상호정보량을 평가하여 순위별로 설정된 수 만큼 후보속성들을 선택한다. 최적속성부분집합 선택 단계에서는 BPSO를 이용하여 후보속성부분집합에서 최적의 속성부분집합을 탐색한다. BPSO의 목적함수는 분류기의 정확도와 선택된 속성 수를 포함하는 다중목적함수(Multi-Object Function)을 이용하였다. 제안된 기법의 성능을 평가하기 위하여 유전자 데이터를 사용하였으며, 실험결과 기존의 방법들에 비해 우수한 성능을 보임을 알 수 있었다.

A planetary lensing feature in caustic-crossing high-magnification microlensing events

  • 정선주;황규하;류윤현;이충욱
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.109.2-109.2
    • /
    • 2012
  • Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this study, we find that because of the different magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions.

  • PDF

시불변 학습계수와 이진 강화 함수를 가진 자기 조직화 형상지도 신경회로망의 동적특성 (The dynamics of self-organizing feature map with constant learning rate and binary reinforcement function)

  • 석진욱;조성원
    • 제어로봇시스템학회논문지
    • /
    • 제2권2호
    • /
    • pp.108-114
    • /
    • 1996
  • We present proofs of the stability and convergence of Self-organizing feature map (SOFM) neural network with time-invarient learning rate and binary reinforcement function. One of the major problems in Self-organizing feature map neural network concerns with learning rate-"Kalman Filter" gain in stochsatic control field which is monotone decreasing function and converges to 0 for satisfying minimum variance property. In this paper, we show that the stability and convergence of Self-organizing feature map neural network with time-invariant learning rate. The analysis of the proposed algorithm shows that the stability and convergence is guranteed with exponentially stable and weak convergence properties as well.s as well.

  • PDF

유전 알고리즘을 이용한 이진 결정 트리의 설계와 응용 (A design of binary decision tree using genetic algorithms and its applications)

  • 정순원;박귀태
    • 전자공학회논문지B
    • /
    • 제33B권6호
    • /
    • pp.102-110
    • /
    • 1996
  • A new design scheme of a binary decision tree is proposed. In this scheme a binary decision tree is constructed by using genetic algorithm and FCM algorithm. At each node optimal or near-optimal feature subset is selected which optimizes fitness function in genetic algorithm. The fitness function is inversely proportional to classification error, balance between cluster, number of feature used. The binary strings in genetic algorithm determine the feature subset and classification results - error, balance - form fuzzy partition matrix affect reproduction of next genratin. The proposed design scheme is applied to the tire tread patterns and handwriteen alphabetic characters. Experimental results show the usefulness of the proposed scheme.

  • PDF

DESIGN OF A BINARY DECISION TREE FOR RECOGNITION OF THE DEFECT PATTERNS OF COLD MILL STRIP USING GENETIC ALGORITHM

  • Lee, Byung-Jin;Kyoung Lyou;Park, Gwi-Tae;Kim, Kyoung-Min
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.208-212
    • /
    • 1998
  • This paper suggests the method to recognize the various defect patterns of cold mill strip using binary decision tree constructed by genetic algorithm automatically. In case of classifying the complex the complex patterns with high similarity like the defect patterns of cold mill strip, the selection of the optimal feature set and the structure of recognizer is important for high recognition rate. In this paper genetic algorithm is used to select a subset of the suitable features at each node in binary decision tree. The feature subset of maximum fitness is chosen and the patterns are classified into two classes by linear decision function. After this process is repeated at each node until all the patterns are classified respectively into individual classes. In this way , binary decision tree classifier is constructed automatically. After construction binary decision tree, the final recognizer is accomplished by the learning process of neural network using a set of standard p tterns at each node. In this paper, binary decision tree classifier is applied to recognition of the defect patterns of cold mill strip and the experimental results are given to show the usefulness of the proposed scheme.

  • PDF

유전 알고리듬을 이용한 이진 트리 분류기의 설계와 냉연 흠 분류에의 적용 (Design of a binary decision tree using genetic algorithm for recognition of the defect patterns of cold mill strip)

  • 김경민;이병진;류경;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.98-103
    • /
    • 2000
  • This paper suggests a method to recognize the various defect patterns of a cold mill strip using a binary decision tree automatically constructed by a genetic algorithm(GA). In classifying complex patterns with high similarity like the defect patterns of a cold mill stirp, the selection of an optimal feature set and an appropriate recognizer is important to achieve high recognition rate. In this paper a GA is used to select a subset of the suitable features at each node in the binary decision tree. The feature subset with maximum fitness is chosen and the patterns are classified into two classes using a linear decision function. This process is repeated at each node until all the patterns are classified into individual classes. In this way, the classifier using the binary decision tree is constructed automatically. After constructing the binary decision tree, the final recognizer is accomplished by having neural network learning sits of standard patterns at each node. In this paper, the classifier using the binary decision tree is applied to the recognition of defect patterns of a cold mill strip, and the experimental results are given to demonstrate the usefulness of the proposed scheme.

  • PDF

이진 분류를 위하여 거리계산을 이용한 특징 변환 기반의 가중된 최소 자승법 (Weighted Least Squares Based on Feature Transformation using Distance Computation for Binary Classification)

  • 장세인;박충식
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.219-224
    • /
    • 2020
  • 이진 분류(binary classification)는 머신러닝(machine learning) 분야에서 많이 다루어진 주제이다. 게다가 이진 분류는 다중 분류로 쉽게 발전될 수 있는 중요한 분야이다. 머신러닝 방법들을 적용할 때에 전처리(preprocessing)이나 특징 추출(feature extraction)과 같은 작업이 필수적이다. 이는 분류기 성능을 향상시키기 위한 중요한 작업이다. 본 논문에서는 가중된 최소 자승법을 기반으로 새로운 머신러닝 방법을 제안한다. 또한, 특징 변환시킬 수 있는 새로운 가중치 계산 방법을 제안한다. 이를 통해 특징 변환과 동시에 학습을 진행할 수 있는 방법을 제안한다. 본 제안을 다섯 개의 머신러닝 데이터베이스에서 실험을 진행하였으며 이 데이터베이스에서 우수한 성능을 얻을 수 있었다.