• Title/Summary/Keyword: binarization

Search Result 369, Processing Time 0.025 seconds

Construction of Printed Hangul Character Database PHD08 (한글 문자 데이터베이스 PHD08 구축)

  • Ham, Dae-Sung;Lee, Duk-Ryong;Jung, In-Suk;Oh, Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.33-40
    • /
    • 2008
  • The application of OCR moves from traditional formatted documents to the web document and natural scene images. It is usual that the new applications use not only standard fonts of Myungjo and Godic but also various fonts. The conventional databases which have mainly been constructed with standard fonts have limitations in applying to the new applications. In this paper, we generate 243 image samples for each of 2350 Hangul character classes which differs in font size, quality, and resolution. Additionally each sample was varied according to binarization threshold and rotational transformation. Through this process 2187 samples were generated for each character class. Totally 5,139,450 samples constitutes the printed Hangul character database called the PHD08. In addition, we present the characteristics and recognition performance by an commercial OCR software.

Image Analysis Algorithms for Comparative Genomic Hybridization (분자 세포 유전학 기법에 응용되는 영상 처리 기술)

  • Kim, De-Sok;Yoo, Jin-Sung;Lee, Jin-Woo;Kim, Jong-Won;Moon, Shin-Yong;Choi, Young-Min
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.66-69
    • /
    • 1998
  • Comparative genomic hybridization (CGH) is an important molecular cytogenetics technique that maps abnormal copy number of specific DNA sequence of the chromosome. CGH is based on quantitative digital image analysis of ratio images from fluorescently labeled chromosomes. In this paper, we would like to introduce how recently developed image analysis algorithms are used for CGH techniques. To average the ratio profile of each chromosome, binarization, skeletonization, and stretching of chromosome images have been studied. Developed algorithms have been implemented in the karyotyping system ChIPS commercially developed at Biomedlab Co. Ltd.

  • PDF

Recognition of Concrete Surface Cracks Using Enhanced Max-Min Neural Networks (개선된 Max-Min 신경망을 이용한 콘크리트 균열 인식)

  • Kim, Kwang-Baek;Park, Hyun-Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.77-82
    • /
    • 2007
  • In this paper, we proposed the image processing techniques for extracting the cracks in a concrete surface crack image and the enhanced Max-Min neural network for recognizing the directions of the extracted cracks. The image processing techniques used are the closing operation or morphological techniques, the Sobel masking for extracting for edges of the cracks, and the iterated binarization for acquiring the binarized image from the crack image. The cracks are extracted from the concrete surface image after applying two times of noise reduction to the binarized image. We proposed the method for automatically recognizing the directions of the cracks with the enhanced Max-Min neural network. Also, we propose an enhanced Max-Min neural network by auto-tuning of learning rate using delta-bar-delta algorithm. The experiments using real concrete crack images showed that the cracks in the concrete crack images were effectively extracted and the enhanced Max-Min neural network was effective in the recognition of direction of the extracted cracks.

  • PDF

Automatic Recognition of Direction Information in Road Sign Image Using OpenCV (OpenCV를 이용한 도로표지 영상에서의 방향정보 자동인식)

  • Kim, Gihong;Chong, Kyusoo;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.293-300
    • /
    • 2013
  • Road signs are important infrastructures for safe and smooth traffic by providing useful information to drivers. It is necessary to establish road sign DB for managing road signs systematically. To provide such DB, manually detection and recognition from imagery can be done. However, it is time and cost consuming. In this study, we proposed algorithms for automatic recognition of direction information in road sign image. Also we developed algorithm code using OpenCV library, and applied it to road sign image. To automatically detect and recognize direction information, we developed program which is composed of various modules such as image enhancement, image binarization, arrow region extraction, interesting point extraction, and template image matching. As a result, we can confirm the possibility of automatic recognition of direction information in road sign image.

Adaptive thresholding for two-dimensional barcode images using two thresholds and the integral image (이중 문턱 값과 적분영상을 이용한 2차원 바코드 영상의 적응적 이진화)

  • Lee, Yeon-Kyung;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2453-2458
    • /
    • 2012
  • In this paper, we propose an adaptive thresholding method to binarize two-dimensional barcode images. Adaptive thresholding methods that minimize light effects convert an original image into a binary image. The methods are applied to document image binarization. The methods, however, have problems of determining box size used in adaptive thresholding. thus, they inappropriate to use in recognition of two-dimensional barcode images. To overcome the problem, we analysis the problem and propose a new adaptive threshold method using the integral image. To show the effectiveness of our method, we compared our method with the well-known existing methods in terms of visual quality and processing time. The experimental result indicates that the proposed method is superior to the existing method.

A Study on a 3D Modeling for surface Inspection of a Moving Object (비등속 이동물체의 표면 검사를 위한 3D 모델링 기술에 관한 연구)

  • Ye, Soo-Young;Yi, Young-Youl;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • We propose a 3D modeling method for surface inspection of non-constant velocity moving object. 1'lie laser lines reflect tile surface curvature. We can acquire 3D surface information by analyzing projected laser lines on object. In this paper, we use multi-line laser to improve the single stripe method and high speed of single frame. Binarization and edge extraction of frame image were proposed for robust laser each line extraction. A new labeling method was used for laser line labeling. We acquired some feature points for image matching from the frame data and juxtaposed the frames data to obtain a 3D shape image. We verified the superiority of proposed method by applying it to inspect container's damages.

  • PDF

Color Analysis and Binarization of River Image for River Surveillance (하천 감시를 위한 하천 영상의 색상 분석 및 이진화 방법)

  • Park, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.175-186
    • /
    • 2018
  • Due to global warming, various natural disasters such as floods and localized heavy rains are increasing. If a natural disaster can be detected and analyzed in advance and effectively, it can prevent enormous damage due to natural disasters. Recent development in visual sensor technologies has encouraged various studies on monitoring environments including rivers. In this paper, we propose a method to detect river regions from river images which can be exploited for river surveillance systems using video sensor networks. In the proposed method, we first analyze the color properties of the river region and the background region of a image and then propose a way to select the proper color channel and binarize the image to detect the river region. It is shown by experimental results that the proposed method is simple but detects river regions accurately.

A Development of Grid Logic Game Contents by Using Image Processing Method (이미지처리 기법을 이용한 Grid Logic 게임 콘텐츠 개발)

  • Oh, Kab-Suk
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.413-421
    • /
    • 2009
  • Recently, various kinds of arcade games are offered through the network with the internet's development. And for the Grid Logic game, it is opened up for everyone who uses the internet but it has a disadvantage that only the provided puzzles can be played. To improve this, in this paper, we developed a Grid Logic game contents using an image of user's as a puzzle. In order to do this, we suggested a threshold decision method, the pre-processing stage of image processing. We showed a method of detecting aim image from a binary image, showed up by the suggested way, and a method of changing into the game data and carrier of the meaning as a specific image at the end of the game are the objects of this paper. The suggested algorithm is constructed as a Java applet and applied to the 10 objects such as characters, logos, persons, etc. to show that this algorithm is suitable for the appropriate acquisition of the Grid Logic game data through the experiment.

  • PDF

Nucleus Recognition of Uterine Cervical Pap-Smears using Fuzzy Reasoning Rule (퍼지 추론 규칙을 이용한 자궁 경부진 핵 인식)

  • Kim, Kwang-Baek;Song, Doo-Heon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.179-187
    • /
    • 2008
  • In this paper, we apply a set of algorithms to classily normal and cancer nucleus from uterine cervical pap-smear images. First, we use lightening compensation algorithm to restore color images that have defamation through the process of obtaining $1{\times}400$ microscope magnification. Then, we remove the background from images with the histogram distributions of RGB regions. We extract nucleus areas from candidates by applying histogram brightness, Kapur method, and our own 8-direction contour tracing algorithm. Various binarization, cumulative entropy, masking algorithms are used in that process. Then, we are able to recognize normal and cancer nucleus from those areas by using three morphological features - directional information, the size of nucleus, and area ratio - with fuzzy membership functions and deciding rules we devised. The experimental result shows our method has low false recognition rate.

  • PDF

Illumination and Rotation Invariant Object Recognition (조명 영향 및 회전에 강인한 물체 인식)

  • Kim, Kye-Kyung;Kim, Jae-Hong;Lee, Jae-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.11
    • /
    • pp.1-8
    • /
    • 2012
  • The application of object recognition technology has been increased with a growing need to introduce automated system in industry. However, object transformed by noises and shadows appeared from illumination causes challenge problem in object detection and recognition. In this paper, an illumination invariant object detection using a DoG filter and adaptive threshold is proposed that reduces noises and shadows effects and reserves geometry features of object. And also, rotation invariant object recognition is proposed that has trained with neural network using classes categorized by object type and rotation angle. The simulation has been processed to evaluate feasibility of the proposed method that shows the accuracy of 99.86% and the matching speed of 0.03 seconds on ETRI database, which has 16,848 object images that has obtained in various lighting environment.