• Title/Summary/Keyword: binaries-X-rays

Search Result 11, Processing Time 0.02 seconds

Modeling Gamma-Ray Emission From the High-Mass X-Ray Binary LS 5039

  • Owocki, Stan;Okazaki, Atsuo;Romero, Gustavo
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-55
    • /
    • 2012
  • A few high-mass X-ray binaries-consisting of an OB star plus compact companion-have been observed by Fermi and ground-based Cerenkov telescopes like High Energy Stereoscopic System (HESS) to be sources of very high energy (VHE; up to 30 TeV) ${\gamma}$-rays. This paper focuses on the prominent ${\gamma}$-ray source, LS 5039, which consists of a massive O6.5V star in a 3.9-day-period, mildly elliptical ($e{\approx}0.24$) orbit with its companion, assumed here to be an unmagnetized compact object (e.g., black hole). Using three dimensional smoothed particle hydrodynamics simulations of the Bondi-Hoyle accretion of the O-star wind onto the companion, we find that the orbital phase variation of the accretion follows very closely the simple Bondi-Hoyle-Lyttleton (BHL) rate for the local radius and wind speed. Moreover, a simple model, wherein intrinsic emission of ${\gamma}$-rays is assumed to track this accretion rate, reproduces quite well Fermi observations of the phase variation of ${\gamma}$-rays in the energy range 0.1-10 GeV. However for the VHE (0.1-30 TeV) radiation observed by the HESS Cerenkov telescope, it is important to account also for photon-photon interactions between the ${\gamma}$-rays and the stellar optical/UV radiation, which effectively attenuates much of the strong emission near periastron. When this is included, we find that this simple BHL accretion model also quite naturally fits the HESS light curve, thus making it a strong alternative to the pulsar-wind-shock models commonly invoked to explain such VHE ${\gamma}$-ray emission in massive-star binaries.

THE FE Kα EMISSION LINE OF INTERMEDIATE POLAR V1223 SAGITTARII

  • Nwaffiah, J.U.;Eze, R.N.C.
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.4
    • /
    • pp.147-152
    • /
    • 2014
  • We present measurements of the Fe $K{\alpha}$ emission line of the intermediate polar V1223 Sagittarii observed with the Suzaku satellite. The spectrum is modeled with an absorbed thermal bremsstrahlung spectrum and three Gaussians for the three components of the Fe $K{\alpha}$ lines. We resolve the neutral or low-ionized (6.41keV), He-like (6.70keV), and H-like (7.00keV) iron lines. We also obtain a thermal continuum temperature of 25 keV, which supports a thermal origin of the hard X-rays observed from the shock heated layers of gas between the white dwarf and the shock front. Hence, we believe that the He-like and H-like lines are from the collisional plasma. On the origin of the Fe $K{\alpha}$ fluorescence line, we find that it could be partly from reflections of hard X-rays from the white dwarf surface and the $N_H$ absorption columns. We also discuss the Fe $K{\alpha}$ emission line as veritable tool for the probe of some astrophysical sites.

A STUDY OF THE DYNAMICAL CROSS CORRELATION FUNCTION IN A BLACK HOLE SOURCE XTE J1550-564

  • SRIRAM, K.;CHOI, C.S.;RAO, A.R.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.599-601
    • /
    • 2015
  • The short time scale X-ray variability associated with the accretion disk around compact objects is complex and is vaguely understood. The study of the cross correlation function gives an insight into the energy dependent behavior of the variations and hence connected processes. Using high resolution RXTE data, we investigate the dynamical cross correlation function of an observation of a black hole source XTE J1550-564 in the steep power law state. The cross correlation between soft and hard X- ray energy bands revealed both correlated and anti-correlated delays (${\leq}{\pm}15s$) on a correlation time scale of 50 s. It was noticed that the observed delays were similar to the delays between X-ray and optical/IR bands in other black hole and neutron star sources. We discuss the possible mechanisms/processes to explain the observed delays in the dynamical CCF.

ACCRETION-JET MODEL FOR THE HARD X-ray Γ - LX CORRELATION IN BLACK HOLE X-ray BINARIES

  • YANG, QI-XIANG;XIE, FU-GUO;YUAN, FENG;ZDZIARSKI, ANDRZEJ A.;GIERLINSKI, MAREK;HO, LUIS C.;YU, ZHAOLONG
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.565-568
    • /
    • 2015
  • In this work, we study the correlation between the photon index (${\Gamma}$) of the X-ray spectrum and the 2-10 keV X-ray luminosity ($L_X$) for black hole X-ray binaries (BHBs). The BHB sample is mainly from the quiescent, hard and intermediate states, with values of $L_X$ ranging from ${\sim}10^{30.5}$ to $10^{37.5}$ erg $s^{-1}$. We find that the photon index ${\Gamma}$ is positively or negatively correlated with the X-ray luminosity $L_X$, for $L_X$ above or below a critical value, ${\sim}10^{36.5}$ erg $s^{-1}$. This result is consistent with previous works. Moreover, when $L_X{\leq}{\sim}10^{33}$ erg $s^{-1}$, we found that the photon index is roughly independent of the X-ray luminosity. We interpret the above correlations in the framework of a coupled hot accretion flow - jet model. Besides, we also find that in the moderate-luminosity region, different sources may have different anti-correlation slopes, and we argue this diversity is caused by the different value of ${\delta}$, which describes the fraction of turbulent dissipation that directly heats electrons.

CHARACTERIZING THE TIME-FREQUENCY PROPERTIES OF THE 4 Hz QUASI-PERIODIC OSCILLATION AROUND THE BLACK HOLE X-ray BINARY XTE J1550-564

  • SU, YI-HAO;CHOU, YI;HU, CHIN-PING;YANG, TING-CHANG;HSIEH, HUNG-EN;CHUANG, PO-SHENG;LIN, CHING-PING;LIAO, NAI-HUI
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.587-589
    • /
    • 2015
  • We present the results from analysis of the Hilbert-Huang transform (HHT) for the 4 Hz quasi-periodic oscillations (QPO) around the black hole X-ray binary XTE J1550-564. The resultant Hilbert spectra demonstrate that the QPO is composed of a series of intermittent signals appearing occasionally. From the analysis of the HHT, we further found the distribution of the lifetimes for the intermittent oscillations and the distribution for the time intervals with no significant signal (the break time). The mean lifetime is 1.45 s and 90% of the oscillation segments have lifetimes less than 3.1 s whereas the mean break time is 0.42 s and 90% of break times are less than 0.73 s. We conclude that the intermittent feature of the QPO could be explained by the Lense-Thirring precession model and rules out interpretations of continual frequency modulation.

MONTE CARLO SIMULATION OF COMPTONIZATION IN A SPHERICAL SHELL GEOMETRY

  • SEON KWANG IL;MIN KYOUNG WOOK;CHOI CHUL SUNG;NAM UK WON
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.45-53
    • /
    • 1994
  • We present the calculation of X -ray spectra produced through Compton scattering of soft X-rays by hot electrons in the spherical shell geometry, using fully relativistic Monte Carlo simulation. With this model, we show that the power-law component, which has been observed in the low luminosity state of low-mass X-ray binaries (LMXBs), is explained physically. From a spectral. analysis, we find that spectral hardness is mainly due to the relative contribution of scattered component. In addition, we see that Wi en spectral features appear when the plasma is optically thick, especially in the high energy range, $E{\gtrsim}100keV$. We suggest that after a number of scattering the escape probability approaches an asymptotic form depending on the geometry of the scattering medium rather than on the initial photon spectrum.

  • PDF

Spider Invasion Across the Galaxy

  • Hui, Chung-Yue
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.101-120
    • /
    • 2014
  • The nature of the exotic stellar corpses which reincarnate by consuming their companion is reviewed. Apart from sucking life from their partners, they are actually eating the doomed companions away by their deadly and powerful particle/radiation beams. Such situation resembles that a female "black widow" spider that eats its mate after mating. These celestial zombies are called - Millisecond pulsars (MSPs). In this review article, I will focus on the effort of Fermi Asian Network (FAN) in exploring these intricating objects over the last five years. Two special classes of MSPs are particularly striking. Since Fermi Gamma-ray Space Telescope has started surveying the gamma-ray sky, the population of "black widows" has been boosted. Another dramatic class is so-called "redbacks" (Australian cousin of "black widows") which has just emerged in the last few years. These MSPs provide us with a long-sought missing link in understanding the transition between accretion-powered and rotation-powered systems. The strategy of hunting MSPs through mulitwavelength observations of the unidentified Fermi objects is also reviewed.

LATEST RESULTS OF THE MAXI MISSION

  • MIHARA, TATEHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.559-563
    • /
    • 2015
  • Monitor of All-sky X-ray Image (MAXI) is a Japanese X-ray all-sky surveyer mounted on the International Space Station (ISS). It has been scanning the whole sky since 2009 during every 92-minute ISS rotation. X-ray transients are quickly found by the real-time nova-search program. As a result, MAXI has issued 133 Astronomer's Telegrams and 44 Gamma-ray burst Coordinated Networks so far. MAXI has discovered six new black holes (BH) in 4.5 years. Long-term behaviors of the MAXI BHs can be classified into two types by their outbursts; a fast-rise exponential-decay type and a fast-rise flat-top one. The slit camera is suitable for accumulating data over a long time. MAXI issued a 37-month catalog containing 500 sources above a ~0.6 mCrab detection limit at 4-10 keV in the region ${\mid}{b}{\mid}$ > $10^{\circ}$. The SSC instrument utilizing an X-ray CCD has detected diffuse soft X-rays extending over a large solid angle, such as the Cygnus super bubble. MAXI/SSC has also detcted a Ne emission line from the rapid soft X-ray nova MAXI J0158-744. The overall shapes of outbursts in Be X-ray binaries (BeXRB) are precisely observed with MAXI/GSC. BeXRB have two kinds of outbursts, a normal outburst and a giant one. The peak dates of the subsequent giant outbursts of A0535+26 repeated with a different period than the orbital one. The Be stellar disk is considered to either have a precession motion or a distorted shape. The long-term behaviors of low-mass X-ray binaries (LMXB) containing weakly magnetized neutron stars are investigated. Transient LMXBs (Aql X-1 and 4U 1608-52) repeated outbursts every 200-1000 days, which is understood by the limit-cycle of hydrogen ionization states in the outer accretion disk. A third state (very dim state) in Aql X-1 and 4U 1608-52 was interpreted as the propeller effect in the unified picture of LMXB. Cir X-1 is a peculiar source in the sense that its long-term behavior is not like typical LMXBs. The luminosity sometimes decreases suddenly at periastron. It might be explained by the stripping of the outer accretion disk by a clumpy stellar wind. MAXI observed 64 large flares from 22 active stars (RS CVns, dMe stars, Argol types, young stellar objects) over 4 years. The total energies are $10^{34}-10^{36}$ erg $s^{-1}$. Since MAXI can measure the spectrum (temperature and emission measure), we can estimate the size of the plasma and the magnetic fields. The size sometimes exceeds the size of the star. The magnetic field is in the range of 10-100 gauss, which is a typical value for solar flares.

STUDY OF ULTRALUMINOUS X-RAY SOURCES IN SOME NEARBY GALAXIES

  • Singha, Akram Chandrajit;Devi, A Senorita
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • We present the results of the spectral and temporal analysis of eight X-ray point sources in five nearby (distance < 20 Mpc) galaxies observed with Chandra. For spectral analysis, an absorbed powerlaw and an absorbed diskblackbody were used as empirical models. Six sources were found to be equally fitted by both the models while two sources were better fitted by the powerlaw model. Based on model parameters, we estimate the X-ray luminosity of these sources in the energy range 0.3 - 10.0 keV, to be of the order of ${\sim}10^{39}ergs\;s^{-1}$ except for one source (X-8) with $L_X>10^{40}ergs\;s^{-1}$. Five of these maybe classified as Ultraluminous X-ray sources (ULXs) with powerlaw photon index within the range, ${\Gamma}{\sim}1.63-2.63$ while the inner disk temperature, kT ~ 0.68 - 1.93 keV, when fitted with the disk blackbody model. The black hole masses harboured by the X-ray point sources were estimated using the disk blackbody model to be in the stellar mass range, however, the black hole mass of one source (X-6) lies within the range $68.37M_{\odot}{\leq}M_{BH}{\leq}176.32M_{\odot}$, which at the upper limit comes under the Intermediate mass black hole range. But if the emission is considered to be beamed by a factor ~ 5, the black hole mass reduces to ${\sim}75M_{\odot}$. The timing analysis of these sources does not show the presence of any short term variations in the kiloseconds timescales.

THE UPDATED ORBITAL PERIOD OF LOW MASS X-ray BINARY 4U 1323-62

  • CHUANG, PO-SHENG;CHOU, YI;HU, CHIN-PING;YANG, TING-CHANG;SU, YI-HAO;LIAO, NAI-HUI;HSIEH, HUNG-EN;LIN, CHING-PING
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.585-586
    • /
    • 2015
  • 4U 1323-62, a low mass X-ray binary with an orbital period of 2.94 hr, exhibits periodic X-ray dips, which are due to absorption by the bulge of the outer accretion disk. The purpose of this study is to search for orbital period changes using archived X-ray data over a time span of 20 years. We present our preliminary results from analyzing light curves observed by RXTE, BeppoSAX, XMM-Newton and Suzaku. We used the method proposed by Hu et al. (2008) to estimate dip center time and adopted the Observed - Calculated method to measure changes in period. We obtained an orbital period of 2.941917(36) hr and a period derivative of $\dot{P}_{orb}/P_{orb}=(-9.9{\pm}3.5){\times}10^{-7}yr^{-1}$. The F-test result shows that the quadratic ephemeris is describes the evolution of the dip phases better than the linear ephemeris at a greater than 95% confidence level. More X-ray data collected from the early 80s will be included to further refine the orbital ephemeris.