• Title/Summary/Keyword: bimorph beam

Search Result 42, Processing Time 0.017 seconds

Experiments on Vibration Control of Laminated Shell Structure with Piezoelectric Material (압전 재료를 이용한 셸형 복합적층판의 진동제어에 대한 실험)

  • 황우석;고성현;박현철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.153-156
    • /
    • 2003
  • Many researchers have tried to develop the piezoelectric shell element and verified them with the benchmarking problem of the piezoelectric bimorph beam since there is no experimental result for the control of shell structure with piezoelectric sensor/actuator. In this paper, the experiments are designed and performed to verify the control Performance of piezoelectric sensor/actuator on the shell structure. PVDF is easy to be attached on the surface of a shell structure but makes weak control forces. On the contrary, PZT makes control forces large enough to control the structure, but it is not easy to make a PZT element with curvature. To use PVDF as an actuator, the structure should be designed as flexible as possible and the voltage amplifier could make high control voltage. PVDF actuator powered by a voltage amplifier that generates output voltage from -200 to +200 volts, shows little control performance to control the vibration of an arch type shell structure. The performance of sensor looks good and the negative velocity feedback control works perfectly. The actuator voltage seems to be too small to verify the control effect Quantitatively. An experiment with high voltage amplifier is scheduled to verify the control effect Quantitatively.

  • PDF

Modeling on Structural Control of a Laminated Composite Plate with Piezoelectric Sensor/Actuators (압전재료를 이용한 복합적층판의 구조제어에 관한 모델링)

  • 황우석;황운봉;한경섭;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • A finite element formulation of vibration control of a laminated plate with piezoelectric sensor/ actuators is presented. Classical lamination theory with the induced strain actuation and Hamilton's principle are used to formulate the equations of motion of the system. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The equations of motion and the total charge are discretized with 4 node, 12 degrees of freedom quadrilateral plate bending elements with one electrical degree of freedom. The mass and stiffness of the piezoelectric layer are introduced by treating them as another layer in laminated plate. Piezoelectric sensor/actuators are distributed, but discrete due to the geometry of electrodes. By defining an i.d. number of electrode for each element, modelling of electrodes with variable geometry can be achieved. The static response of a piezoelectric bimorph beam to electrical loading and sensor voltage to given displacement are calculated. For a laminated plate under the negative velocity feedback control, the direct time response by the Newmark-.betha. method and damped frequencies and modal damping ratios by modal state space analysis are derived.