• Title/Summary/Keyword: bigdata analysis

Search Result 345, Processing Time 0.03 seconds

GIS Optimization for Bigdata Analysis and AI Applying (Bigdata 분석과 인공지능 적용한 GIS 최적화 연구)

  • Kwak, Eun-young;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.171-173
    • /
    • 2022
  • The 4th industrial revolution technology is developing people's lives more efficiently. GIS provided on the Internet services such as traffic information and time information makes people getting more quickly to destination. National geographic information service(NGIS) and each local government are making basic data to investigate SOC accessibility for analyzing optimal point. To construct the shortest distance, the accessibility from the starting point to the arrival point is analyzed. Applying road network map, the starting point and the ending point, the shortest distance, the optimal accessibility is calculated by using Dijkstra algorithm. The analysis information from multiple starting points to multiple destinations was required more than 3 steps of manual analysis to decide the position for the optimal point, within about 0.1% error. It took more time to process the many-to-many (M×N) calculation, requiring at least 32G memory specification of the computer. If an optimal proximity analysis service is provided at a desired location more versatile, it is possible to efficiently analyze locations that are vulnerable to business start-up and living facilities access, and facility selection for the public.

  • PDF

The Types of Road Weather Big Data and the Strategy for Their Use: Case Analysis (도로 기상 빅데이터 유형별 활용 전략: 국내외 사례 분석)

  • Hahm, Yukun;Jun, YongJoo;Kim, KangHwa;Kim, Seunghyun
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Weather acts through low visibility, precipitation, high winds, and temperature extremes to affect driver capabilities, vehicle performance (i.e., traction, stability and maneuverability), pavement friction, roadway infrastructure, crash risk, traffic flow, and agency productivity. Recently a variety of road weather big data sources such as CCTV, road sensor/systems, car sensor have been developed to solve the weather-related problems, This study identifies and defines the types and characteristics of these sources to suggest how to utilize them for car safety and efficiency as well as road management through analyzing domestic and oversea cases of road weather big data applications.

  • PDF

A Study on Energy Management System of Sport Facilities using IoT and Bigdata (사물인터넷과 빅데이터를 이용한 스포츠 시설 에너지 관리시스템에 관한 연구)

  • Kwon, Yong-Kwang;Heo, Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.59-64
    • /
    • 2020
  • In the Paris Climate Agreement, Korea submitted an ambitious goal of reducing the greenhouse gas emission forecast (BAU) by 37% by 2030. And as one of the countermeasures, a smart grid, an intelligent power grid, was presented. In order to apply the smart grid, EMS(Energy Management System) needs to be installed and operated in various fields, and the supply is delayed due to the lack of awareness of users and the limitations of system ROI. Therefore, recently, various data analysis and control technologies have been proposed to increase the efficiency of the installed EMS. In this study, we present a measurement control algorithm that analyzes and predicts big data collected by IoT using a SARIMA model to check and operate energy consumption of public sports facilities.

Sales Volume Prediction Model for Temperature Change using Big Data Analysis (빅데이터 분석을 이용한 기온 변화에 대한 판매량 예측 모델)

  • Back, Seung-Hoon;Oh, Ji-Yeon;Lee, Ji-Su;Hong, Jun-Ki;Hong, Sung-Chan
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.29-38
    • /
    • 2019
  • In this paper, we propose a sales forecasting model that forecasts the sales volume of short sleeves and outerwear according to the temperature change by utilizing accumulated big data from the online shopping mall 'A' over the past five years to increase sales volume and efficient inventory management. The proposed model predicts sales of short sleeves and outerwear according to temperature changes in 2018 by analyzing sales volume of short sleeves and outerwear from 2014 to 2017. Using the proposed sales forecasting model, we compared the sales forecasts of 2018 with the actual sales volume and found that the error rates are ±1.5% and ±8% for short sleeve and outerwear respectively.

  • PDF

Movie attendance and sales forecast model through big data analysis (빅데이터 분석을 통한 영화 관객수, 매출액 예측 모델)

  • Lee, Eung-hwan;Yu, Jong-Pil
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.185-194
    • /
    • 2019
  • In the 100-year history of Korean films, Korean films have grown to more than 100 million viewers every year since 2012, and their total sales are estimated at 1 trillion. It is assumed that the influence on the popularity of Korean movies is related to 2012, when 60% of smartphone penetration rate and 30 million subscribers exceeded. As a result, before and after 2012, changes in movie boxing factor variables were needed, and the prediction model trained as a new independent variable was applied to actual data.

  • PDF

An Empirical Evaluation Analysis of the Performance of In-memory Bigdata Processing Platform (메모리 기반 빅데이터 처리 프레임워크의 성능개선 연구)

  • Lee, Jae hwan;Choi, Jun;Koo, Dong hun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.3
    • /
    • pp.13-19
    • /
    • 2016
  • Spark, an in-memory big-data processing framework is popular to use for real-time processing workload. Spark can store all intermediate data in the cluster memory so that Spark can minimize I/O access. However, when the resident memory of workload is larger that the physical memory amount of the cluster, the total performance can drop dramatically. In this paper, we analyse the factors of bottleneck on PageRank Application that needs many memory through experiment, and cluster the Spark with Tachyon File System for using memory to solve the factor of bottleneck and then we improve the performance about 18%.

Assessing the Relationship between MBTI User Personality and Smartphone Usage (스마트폰 사용과 MBTI 사용자 특성간의 관계 평가)

  • Rajashree, Sokasane S.;Kim, Kyungbaek
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • Recently, predicting personality with the help of smartphone usage becomes very interesting and attention grabbing topic in the field of research. At present there are some approaches towards detecting a user's personality which uses the smartphones usage data, such as call detail records (CDRs), the usage of short message services (SMSs) and the usage of social networking services application. In this paper, we focus on the assessing the correlation between MBTI based user personality and the smartphone usage data. We used $Na{\ddot{i}}ve$ Bayes and SVM classifier for classifying user personalities by extracting some features from smartphone usage data. From analysis it is observed that, among all extracted features facebook usage log working as the best feature for classification of introverts and extraverts; and SVM classifier works well as compared to $Na{\ddot{i}}ve$ Bayes.

  • PDF

News based Stock Market Sentiment Lexicon Acquisition Using Word2Vec (Word2Vec을 활용한 뉴스 기반 주가지수 방향성 예측용 감성 사전 구축)

  • Kim, Daye;Lee, Youngin
    • The Journal of Bigdata
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2018
  • Stock market prediction has been long dream for researchers as well as the public. Forecasting ever-changing stock market, though, proved a Herculean task. This study proposes a novel stock market sentiment lexicon acquisition system that can predict the growth (or decline) of stock market index, based on economic news. For this purpose, we have collected 3-year's economic news from January 2015 to December 2017 and adopted Word2Vec model to consider the context of words. To evaluate the result, we performed sentiment analysis to collected news data with the automated constructed lexicon and compared with closings of the KOSPI (Korea Composite Stock Price Index), the South Korean stock market index based on economic news.

A Guiding System of Visualization for Quantitative Bigdata Based on User Intention (사용자 의도 기반 정량적 빅데이터 시각화 가이드라인 툴)

  • Byun, Jung Yun;Park, Young B.
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.6
    • /
    • pp.261-266
    • /
    • 2016
  • Chart suggestion method provided by various existing data visualization tools makes chart recommendations without considering the user intention. Data visualization is not properly carried out and thus, unclear in some tools because they do not follow the segmented quantitative data classification policy. This paper provides a guideline that clearly classifies the quantitative input data and that effectively suggests charts based on user intention. The guideline is two-fold; the analysis guideline examines the quantitative data and the suggestion guideline recommends charts based on the input data type and the user intention. Following this guideline, we excluded charts in disagreement with the user intention and confirmed that the time user spends in the chart selection process has decreased.

Development of IIoT Edge Middleware System for Smart Services (스마트서비스를 위한 경량형 IIoT Edge 미들웨어 시스템 개발)

  • Lee, Han;Hwang, Joon Suk;Kang, Dae Hyun;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.115-125
    • /
    • 2021
  • Due to various ICT Technology innovations and Digital Transformation, the Internet of Things(IoT) environment is increasingly requiring intelligence, decentralization, and automated service, especially an advanced and stable smart service environment in the Industrial Internet of Things(IIoT) where communication network(5G), data analysis and artificial intelligence(AI), and digital twin technology are combined. In this study, we propose IIoT Edge middleware systems for flexible interface with heterogeneous devices such as facilities and sensors at various industrial sites and for quick and stable data collection and processing.