• Title/Summary/Keyword: bigdata

Search Result 647, Processing Time 0.024 seconds

Study of major issues and trends facing ports, using big data news: From 1991 to 2020 (뉴스 빅데이터를 활용한 항만이슈 변화연구 : 1991~2020)

  • Yoon, Hee-Young
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.159-178
    • /
    • 2021
  • This study analyzed issues and trends related to ports with 86,611 news articles for the 30 years from 1991 to 2020, using BIGKinds, a big data news analysis service. The analysis was based on keyword analysis, word cloud, relationship diagram analysis offered by BIG Kinds. Analysis results of issues and trends on ports for the last 30 years are summarized as follows. First, during Phase 1 (1991-2000), individual ports such as Busan, Incheon, and Gwangyang ports tried to strengthen their own competitiveness. During Phase 2 (2001-2010), efforts were made on gaining more professional and specialized port management abilities by establishing the Busan Port Authority in 2004, the Incheon Port Authority in 2005, and the Ulsan Port Authority in 2007. During Phase 3 (2011-2020), the promotion of future-oriented, eco-friendly, and smart ports was major issues. Efforts to reduce particulate matters and pollutants produced from ports were accelerated, and an attempt to build a smart port driven by port automation and digitalization was also intensified. Lastly, in 2020, when the maritime sector was severely hit by the unexpected shock of the COVID-19 pandemic, a microscopic analysis of trends and issues in 2019 and 2020 was made to look into the impact the pandemic on the maritime industry. It was found that shipping and port industries experienced more drastic changes than ever while trying to prepare for a post-pandemic era as well as promoting future-oriented ports. This study made policy suggestions by analyzing port-related news articles and trends, and it is expected that based on the findings of this research, further studies on enhancing the competitiveness of ports and devising a sustainable development strategy will follow through a comparative analysis of port issues of different countries, thereby making further progress toward academic research on ports.

Real-time CRM Strategy of Big Data and Smart Offering System: KB Kookmin Card Case (KB국민카드의 빅데이터를 활용한 실시간 CRM 전략: 스마트 오퍼링 시스템)

  • Choi, Jaewon;Sohn, Bongjin;Lim, Hyuna
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.1-23
    • /
    • 2019
  • Big data refers to data that is difficult to store, manage, and analyze by existing software. As the lifestyle changes of consumers increase the size and types of needs that consumers desire, they are investing a lot of time and money to understand the needs of consumers. Companies in various industries utilize Big Data to improve their products and services to meet their needs, analyze unstructured data, and respond to real-time responses to products and services. The financial industry operates a decision support system that uses financial data to develop financial products and manage customer risks. The use of big data by financial institutions can effectively create added value of the value chain, and it is possible to develop a more advanced customer relationship management strategy. Financial institutions can utilize the purchase data and unstructured data generated by the credit card, and it becomes possible to confirm and satisfy the customer's desire. CRM has a granular process that can be measured in real time as it grows with information knowledge systems. With the development of information service and CRM, the platform has change and it has become possible to meet consumer needs in various environments. Recently, as the needs of consumers have diversified, more companies are providing systematic marketing services using data mining and advanced CRM (Customer Relationship Management) techniques. KB Kookmin Card, which started as a credit card business in 1980, introduced early stabilization of processes and computer systems, and actively participated in introducing new technologies and systems. In 2011, the bank and credit card companies separated, leading the 'Hye-dam Card' and 'One Card' markets, which were deviated from the existing concept. In 2017, the total use of domestic credit cards and check cards grew by 5.6% year-on-year to 886 trillion won. In 2018, we received a long-term rating of AA + as a result of our credit card evaluation. We confirmed that our credit rating was at the top of the list through effective marketing strategies and services. At present, Kookmin Card emphasizes strategies to meet the individual needs of customers and to maximize the lifetime value of consumers by utilizing payment data of customers. KB Kookmin Card combines internal and external big data and conducts marketing in real time or builds a system for monitoring. KB Kookmin Card has built a marketing system that detects realtime behavior using big data such as visiting the homepage and purchasing history by using the customer card information. It is designed to enable customers to capture action events in real time and execute marketing by utilizing the stores, locations, amounts, usage pattern, etc. of the card transactions. We have created more than 280 different scenarios based on the customer's life cycle and are conducting marketing plans to accommodate various customer groups in real time. We operate a smart offering system, which is a highly efficient marketing management system that detects customers' card usage, customer behavior, and location information in real time, and provides further refinement services by combining with various apps. This study aims to identify the traditional CRM to the current CRM strategy through the process of changing the CRM strategy. Finally, I will confirm the current CRM strategy through KB Kookmin card's big data utilization strategy and marketing activities and propose a marketing plan for KB Kookmin card's future CRM strategy. KB Kookmin Card should invest in securing ICT technology and human resources, which are becoming more sophisticated for the success and continuous growth of smart offering system. It is necessary to establish a strategy for securing profit from a long-term perspective and systematically proceed. Especially, in the current situation where privacy violation and personal information leakage issues are being addressed, efforts should be made to induce customers' recognition of marketing using customer information and to form corporate image emphasizing security.

Estimation of Representative Wave Period and Optimal Probability Density Function Using Wave Observed Data around Korean Western Coast (국내 서해안 파랑 관측자료를 이용한 대표주기 산정 및 최적 확률밀도함수 추정)

  • Uk-Jae Lee;Hong-Yeon Cho;Jin Ho Park;Dong-Hui Ko
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.146-154
    • /
    • 2023
  • In this study, the peak wave period Tp and mean wave period T02 and Tm-1, 0, which are major parameters for classifying ocean characteristics, were calculated using water surface elevation data observed from the second west coast oceanographic and meteorological observation tower. In addition, the ratio of abnormal data, correlation analysis, and optimal probability density function were estimated. In the case of Tp among the calculated representative periods, the proportion of abnormal data was 5.73% and 0.67% at each point, and T02 was 4.35% and 0.01%. Tm-1, 0 was found to be 2.82% and 0.03%. Meanwhile, as a result of analyzing the relationship between T02 and Tp, the relationship was calculated to be 0.53 and 0.63 for each point. The relationship between Tm-1, 0 and Tp was 1.15 and 1.32, respectively, and T02, Tm-1, 0 was 1.18 and 1.22. As a result of estimating the optimal probability density function of the calculated representative period, Tp followed the 'Log-normal' and 'Normal' distributions at each point, and T02 was 'Gamma', 'Normal' distribution and Tm-1, 0 showed that 'Log-normal' and 'Normal' distribution were dominant, respectively. It is decided that these results can be used as basic data for wave analysis conducted on the west coast.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Design of Client-Server Model For Effective Processing and Utilization of Bigdata (빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계)

  • Park, Dae Seo;Kim, Hwa Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.109-122
    • /
    • 2016
  • Recently, big data analysis has developed into a field of interest to individuals and non-experts as well as companies and professionals. Accordingly, it is utilized for marketing and social problem solving by analyzing the data currently opened or collected directly. In Korea, various companies and individuals are challenging big data analysis, but it is difficult from the initial stage of analysis due to limitation of big data disclosure and collection difficulties. Nowadays, the system improvement for big data activation and big data disclosure services are variously carried out in Korea and abroad, and services for opening public data such as domestic government 3.0 (data.go.kr) are mainly implemented. In addition to the efforts made by the government, services that share data held by corporations or individuals are running, but it is difficult to find useful data because of the lack of shared data. In addition, big data traffic problems can occur because it is necessary to download and examine the entire data in order to grasp the attributes and simple information about the shared data. Therefore, We need for a new system for big data processing and utilization. First, big data pre-analysis technology is needed as a way to solve big data sharing problem. Pre-analysis is a concept proposed in this paper in order to solve the problem of sharing big data, and it means to provide users with the results generated by pre-analyzing the data in advance. Through preliminary analysis, it is possible to improve the usability of big data by providing information that can grasp the properties and characteristics of big data when the data user searches for big data. In addition, by sharing the summary data or sample data generated through the pre-analysis, it is possible to solve the security problem that may occur when the original data is disclosed, thereby enabling the big data sharing between the data provider and the data user. Second, it is necessary to quickly generate appropriate preprocessing results according to the level of disclosure or network status of raw data and to provide the results to users through big data distribution processing using spark. Third, in order to solve the problem of big traffic, the system monitors the traffic of the network in real time. When preprocessing the data requested by the user, preprocessing to a size available in the current network and transmitting it to the user is required so that no big traffic occurs. In this paper, we present various data sizes according to the level of disclosure through pre - analysis. This method is expected to show a low traffic volume when compared with the conventional method of sharing only raw data in a large number of systems. In this paper, we describe how to solve problems that occur when big data is released and used, and to help facilitate sharing and analysis. The client-server model uses SPARK for fast analysis and processing of user requests. Server Agent and a Client Agent, each of which is deployed on the Server and Client side. The Server Agent is a necessary agent for the data provider and performs preliminary analysis of big data to generate Data Descriptor with information of Sample Data, Summary Data, and Raw Data. In addition, it performs fast and efficient big data preprocessing through big data distribution processing and continuously monitors network traffic. The Client Agent is an agent placed on the data user side. It can search the big data through the Data Descriptor which is the result of the pre-analysis and can quickly search the data. The desired data can be requested from the server to download the big data according to the level of disclosure. It separates the Server Agent and the client agent when the data provider publishes the data for data to be used by the user. In particular, we focus on the Big Data Sharing, Distributed Big Data Processing, Big Traffic problem, and construct the detailed module of the client - server model and present the design method of each module. The system designed on the basis of the proposed model, the user who acquires the data analyzes the data in the desired direction or preprocesses the new data. By analyzing the newly processed data through the server agent, the data user changes its role as the data provider. The data provider can also obtain useful statistical information from the Data Descriptor of the data it discloses and become a data user to perform new analysis using the sample data. In this way, raw data is processed and processed big data is utilized by the user, thereby forming a natural shared environment. The role of data provider and data user is not distinguished, and provides an ideal shared service that enables everyone to be a provider and a user. The client-server model solves the problem of sharing big data and provides a free sharing environment to securely big data disclosure and provides an ideal shared service to easily find big data.

Word-of-Mouth Effect for Online Sales of K-Beauty Products: Centered on China SINA Weibo and Meipai (K-Beauty 구전효과가 온라인 매출액에 미치는 영향: 중국 SINA Weibo와 Meipai 중심으로)

  • Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.197-218
    • /
    • 2019
  • In addition to economic growth and national income increase, China is also experiencing rapid growth in consumption of cosmetics. About 67% of the total trade volume of Chinese cosmetics is made by e-commerce and especially K-Beauty products, which are Korean cosmetics are very popular. According to previous studies, 80% of consumer goods such as cosmetics are affected by the word of mouth information, searching the product information before purchase. Mostly, consumers acquire information related to cosmetics through comments made by other consumers on SNS such as SINA Weibo and Wechat, and recently they also use information about beauty related video channels. Most of the previous online word-of-mouth researches were mainly focused on media itself such as Facebook, Twitter, and blogs. However, the informational characteristics and the expression forms are also diverse. Typical types are text, picture, and video. This study focused on these types. We analyze the unstructured data of SINA Weibo, the SNS representative platform of China, and Meipai, the video platform, and analyze the impact of K-Beauty brand sales by dividing online word-of-mouth information with quantity and direction information. We analyzed about 330,000 data from Meipai, and 110,000 data from SINA Weibo and analyzed the basic properties of cosmetics. As a result of analysis, the amount of online word-of-mouth information has a positive effect on the sales of cosmetics irrespective of the type of media. However, the online videos showed higher impacts than the pictures and texts. Therefore, it is more effective for companies to carry out advertising and promotional activities in parallel with the existing SNS as well as video related information. It is understood that it is important to generate the frequency of exposure irrespective of media type. The positiveness of the video media was significant but the positiveness of the picture and text media was not significant. Due to the nature of information types, the amount of information in video media is more than that in text-oriented media, and video-related channels are emerging all over the world. In particular, China has made a number of video platforms in recent years and has enjoyed popularity among teenagers and thirties. As a result, existing SNS users are being dispersed to video media. We also analyzed the effect of online type of information on the online cosmetics sales by dividing the product type of cosmetics into basic cosmetics and color cosmetics. As a result, basic cosmetics had a positive effect on the sales according to the number of online videos and it was affected by the negative information of the videos. In the case of basic cosmetics, effects or characteristics do not appear immediately like color cosmetics, so information such as changes after use is often transmitted over a period of time. Therefore, it is important for companies to move more quickly to issues generated from video media. Color cosmetics are largely influenced by negative oral statements and sensitive to picture and text-oriented media. Information such as picture and text has the advantage and disadvantage that the process of making it can be made easier than video. Therefore, complaints and opinions are generally expressed in SNS quickly and immediately. Finally, we analyzed how product diversity affects sales according to online word of mouth information type. As a result of the analysis, it can be confirmed that when a variety of products are introduced in a video channel, they have a positive effect on online cosmetics sales. The significance of this study in the theoretical aspect is that, as in the previous studies, online sales have basically proved that K-Beauty cosmetics are also influenced by word-of-mouth. However this study focused on media types and both media have a positive impact on sales, as in previous studies, but it has been proven that video is more informative and influencing than text, depending on media abundance. In addition, according to the existing research on information direction, it is said that the negative influence has more influence, but in the basic study, the correlation is not significant, but the effect of negation in the case of color cosmetics is large. In the case of temporal fashion products such as color cosmetics, fast oral effect is influenced. In practical terms, it is expected that it will be helpful to use advertising strategies on the sales and advertising strategy of K-Beauty cosmetics in China by distinguishing basic and color cosmetics. In addition, it can be said that it recognized the importance of a video advertising strategy such as YouTube and one-person media. The results of this study can be used as basic data for analyzing the big data in understanding the Chinese cosmetics market and establishing appropriate strategies and marketing utilization of related companies.

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.