• Title/Summary/Keyword: big data tasks

Search Result 98, Processing Time 0.028 seconds

Guidelines for big data projects in artificial intelligence mathematics education (인공지능 수학 교육을 위한 빅데이터 프로젝트 과제 가이드라인)

  • Lee, Junghwa;Han, Chaereen;Lim, Woong
    • The Mathematical Education
    • /
    • v.62 no.2
    • /
    • pp.289-302
    • /
    • 2023
  • In today's digital information society, student knowledge and skills to analyze big data and make informed decisions have become an important goal of school mathematics. Integrating big data statistical projects with digital technologies in high school <Artificial Intelligence> mathematics courses has the potential to provide students with a learning experience of high impact that can develop these essential skills. This paper proposes a set of guidelines for designing effective big data statistical project-based tasks and evaluates the tasks in the artificial intelligence mathematics textbook against these criteria. The proposed guidelines recommend that projects should: (1) align knowledge and skills with the national school mathematics curriculum; (2) use preprocessed massive datasets; (3) employ data scientists' problem-solving methods; (4) encourage decision-making; (5) leverage technological tools; and (6) promote collaborative learning. The findings indicate that few textbooks fully align with these guidelines, with most failing to incorporate elements corresponding to Guideline 2 in their project tasks. In addition, most tasks in the textbooks overlook or omit data preprocessing, either by using smaller datasets or by using big data without any form of preprocessing. This can potentially result in misconceptions among students regarding the nature of big data. Furthermore, this paper discusses the relevant mathematical knowledge and skills necessary for artificial intelligence, as well as the potential benefits and pedagogical considerations associated with integrating technology into big data tasks. This research sheds light on teaching mathematical concepts with machine learning algorithms and the effective use of technology tools in big data education.

Analysis of Practical Tasks of Technical Designers of Big Vendors (대형 의류벤더의 테크니컬 디자이너 실무 분석)

  • Ha, Hee Jung
    • Human Ecology Research
    • /
    • v.55 no.5
    • /
    • pp.555-566
    • /
    • 2017
  • This study analyzes the practical tasks and required competency for technical designers to provide basic data on the training of domestic technical designers. The survey was applied to 21 technical designers of big vendors as well as investigated tasks, task flow, important tasks, time-consuming tasks, and required competencies. The results of the study are as follows. First, the technical designers were in charge of several brands of buyers and distributors of fashion companies, or several lines of the same brand. The main production items were cut and sewn knits. Second, the flow of task and tasks were in the order of buyer comments analysis, sloper decision to matching style, sewing specification, productive sewing method research, size specification suggestion, pattern correction comments, construction decision to matching style & fabric, sample evaluations, fit approval, business e-mail writing, specification & grading confirmation, and communication with buyer. Third, five tasks (analysis of buyer comments analysis, communication with buyer, pattern correction comments, productive sewing methods research, sample evaluation) were important and time-consuming tasks. Fourth, reeducation was required in order of sewing, pattern, English, fabric, and fitting. Fifth, competencies to be a technical designers were fitting, pattern correction, size specification & grading, construction & sewing specification, sewing terms & techniques, and communication skills. In conclusion, technical designer training should focus on technology-based instruction, such as sample evaluation, fitting, pattern correction, and productive sewing methods research of cut and sewn knits.

A Study on the Strategy of the Use of Big Data for Cost Estimating in Construction Management Firms based on the SWOT Analysis (SWOT분석을 통한 CM사 견적업무 빅데이터 활용전략에 관한 연구)

  • Kim, Hyeon Jin;Kim, Han Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.54-64
    • /
    • 2022
  • Since the interest in big data is growing exponentially, various types of research and development in the field of big data have been conducted in the construction industry. Among various application areas, cost estimating can be a topic where the use of big data provides positive benefits. In order for firms to make efficient use of big data for estimating tasks, they need to establish a strategy based on the multifaceted analysis of internal and external environments. The objective of the study is to develop and propose a strategy of the use of big data for construction management(CM) firms' cost estimating tasks based on the SWOT analysis. Through the combined efforts of literature review, questionnaire survey, interviews and the SWOT analysis, the study suggests that CM firms need to maintain the current level of the receptive culture for the use of big data and expand incrementally information resources. It also proposes that they need to reinforce the weak areas including big data experts and practice infrastructure for improving the big data-based cost estimating.

A Study on Big Data-Driven Business in the Financial Industry: Focus on the Organization and Process of Using Big Data in Banking Industry (금융산업의 빅데이터 경영 사례에 관한 연구: 은행의 빅데이터 활용 조직 및 프로세스를 중심으로)

  • Gyu-Bae Kim;Yong Cheol Kim;Moon Seop Kim
    • Asia-Pacific Journal of Business
    • /
    • v.15 no.1
    • /
    • pp.131-143
    • /
    • 2024
  • Purpose - The purpose of this study was to analyze cases of big data-driven business in the financial industry, focusing on organizational structure and business processes using big data in banking industry. Design/methodology/approach - This study used a case study approach. To this end, cases of two banks implementing big data-driven business were collected and analyzed. Findings - There are two things in common between the two cases. One is that the central tasks for big data-driven business are performed by a centralized organization. The other is that the role distribution and work collaboration between the headquarters and business departments are well established. On the other hand, there are two differences between the two banks. One marketing campaign is led by the headquarters and the other marketing campaign is led by the business departments. The two banks differ in how they carry out marketing campaigns and how they carry out big data-related tasks. Research implications or Originality - When banks plan and implement big data-driven business, the common aspects of the two banks analyzed through this case study can be fully referenced when creating an organization and process. In addition, it will be necessary to create an organizational structure and work process that best fit the special situation considering the company's environment or capabilities.

The Creation and Placement of VMs and Tasks in Virtualized Hadoop Cluster Environments

  • Kim, Tae-Won;Chung, Hae-jin;Kim, Joon-Mo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1499-1505
    • /
    • 2012
  • Recently, the distributed processing system for big data has been actively investigated owing to the development of high speed network and storage technologies. In addition, virtual system that can provide efficient use of system resources through the consolidation of servers has been increasingly recognized. But, when we configure distributed processing system for big data in virtual machine environments, many problems occur. In this paper, we did an experiment on the optimization of I/O bandwidth according to the creation and placement of VMs and tasks with composing Hadoop cluster in virtual environments and evaluated the results of an experiment. These results conducted by this paper will be used in the study on the development of Hadoop Scheduler supporting I/O bandwidth balancing in virtual environments.

Policy Achievements and Tasks for Using Big-Data in Regional Tourism -The Case of Jeju Special Self-Governing Province- (지역관광 빅데이터 정책성과와 과제 -제주특별자치도를 사례로-)

  • Koh, Sun-Young;JEONG, GEUNOH
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.579-586
    • /
    • 2021
  • This study examines the application of big data and tasks of tourism based on the case of Jeju Special Self-Governing Province, which used big data for regional tourism policy. Through the use of big data, it is possible to understand rapidly changing tourism trends and trends in the tourism industry in a timely and detailed manner. and also could be used to elaborate existing tourism statistics. In addition, beyond the level of big data analysis to understand tourism phenomena, its scope has expanded to provide a platform for providing real-time customized services. This was made possible by the cooperative governance of industry, government, and academia for data building, analysis, infrastructure, and utilization. As a task, the limitation of budget dependence and institutional problems such as the infrastructure for building personal-level data for personalized services, which are the ultimate goal of smart tourism, and the Personal Information Protection Act remain. In addition, expertise and technical limitations for data analysis and data linkage remain.

A GPU-enabled Face Detection System in the Hadoop Platform Considering Big Data for Images (이미지 빅데이터를 고려한 하둡 플랫폼 환경에서 GPU 기반의 얼굴 검출 시스템)

  • Bae, Yuseok;Park, Jongyoul
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • With the advent of the era of digital big data, the Hadoop platform has become widely used in various fields. However, the Hadoop MapReduce framework suffers from problems related to the increase of the name node's main memory and map tasks for the processing of large number of small files. In addition, a method for running C++-based tasks in the MapReduce framework is required in order to conjugate GPUs supporting hardware-based data parallelism in the MapReduce framework. Therefore, in this paper, we present a face detection system that generates a sequence file for images to process big data for images in the Hadoop platform. The system also deals with tasks for GPU-based face detection in the MapReduce framework using Hadoop Pipes. We demonstrate a performance increase of around 6.8-fold as compared to a single CPU process.

Research on Development of Support Tools for Local Government Business Transaction Operation Using Big Data Analysis Methodology (빅데이터 분석 방법론을 활용한 지방자치단체 단위과제 운영 지원도구 개발 연구)

  • Kim, Dabeen;Lee, Eunjung;Ryu, Hanjo
    • The Korean Journal of Archival Studies
    • /
    • no.70
    • /
    • pp.85-117
    • /
    • 2021
  • The purpose of this study is to investigate and analyze the current status of unit tasks, unit task operation, and record management problems used by local governments, and to present improvement measures using text-based big data technology based on the implications derived from the process. Local governments are in a serious state of record management operation due to errors in preservation period due to misclassification of unit tasks, inability to identify types of overcommon and institutional affairs, errors in unit tasks, errors in name, referenceable standards, and tools. However, the number of unit tasks is about 720,000, which cannot be effectively controlled due to excessive quantities, and thus strict and controllable tools and standards are needed. In order to solve these problems, this study developed a system that applies text-based analysis tools such as corpus and tokenization technology during big data analysis, and applied them to the names and construction terms constituting the record management standard. These unit task operation support tools are expected to contribute significantly to record management tasks as they can support standard operability such as uniform preservation period, identification of delegated office records, control of duplicate and similar unit task creation, and common tasks. Therefore, if the big data analysis methodology can be linked to BRM and RMS in the future, it is expected that the quality of the record management standard work will increase.

Big data platform for health monitoring systems of multiple bridges

  • Wang, Manya;Ding, Youliang;Wan, Chunfeng;Zhao, Hanwei
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.345-365
    • /
    • 2020
  • At present, many machine leaning and data mining methods are used for analyzing and predicting structural response characteristics. However, the platform that combines big data analysis methods with online and offline analysis modules has not been used in actual projects. This work is dedicated to developing a multifunctional Hadoop-Spark big data platform for bridges to monitor and evaluate the serviceability based on structural health monitoring system. It realizes rapid processing, analysis and storage of collected health monitoring data. The platform contains offline computing and online analysis modules, using Hadoop-Spark environment. Hadoop provides the overall framework and storage subsystem for big data platform, while Spark is used for online computing. Finally, the big data Hadoop-Spark platform computational performance is verified through several actual analysis tasks. Experiments show the Hadoop-Spark big data platform has good fault tolerance, scalability and online analysis performance. It can meet the daily analysis requirements of 5s/time for one bridge and 40s/time for 100 bridges.

A Study on the Web Building Assistant System Using GUI Object Detection and Large Language Model (웹 구축 보조 시스템에 대한 GUI 객체 감지 및 대규모 언어 모델 활용 연구)

  • Hyun-Cheol Jang;Hyungkuk Jang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.830-833
    • /
    • 2024
  • As Large Language Models (LLM) like OpenAI's ChatGPT[1] continue to grow in popularity, new applications and services are expected to emerge. This paper introduces an experimental study on a smart web-builder application assistance system that combines Computer Vision with GUI object recognition and the ChatGPT (LLM). First of all, the research strategy employed computer vision technology in conjunction with Microsoft's "ChatGPT for Robotics: Design Principles and Model Abilities"[2] design strategy. Additionally, this research explores the capabilities of Large Language Model like ChatGPT in various application design tasks, specifically in assisting with web-builder tasks. The study examines the ability of ChatGPT to synthesize code through both directed prompts and free-form conversation strategies. The researchers also explored ChatGPT's ability to perform various tasks within the builder domain, including functions and closure loop inferences, basic logical and mathematical reasoning. Overall, this research proposes an efficient way to perform various application system tasks by combining natural language commands with computer vision technology and LLM (ChatGPT). This approach allows for user interaction through natural language commands while building applications.