Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.393-394
/
2022
본 논문에서는 과학기술정보통신부와 통계청에서 주관하고 한국산업인력공단에서 시행(한국데이터산업진흥원 위탁)하는 「빅데이터분석기사」에 대한 필기 및 실기 시험의 내용을 설명하고 지금까지 2회에 걸쳐 시행된 시험에 대한 문제점과 이에 대한 해결방안을 제시하였다. 2021년 처음 시행된 국가기술자격으로써 기존 자격증과의 차별성, 난이도 조정, 수험생들의 각종 민원 발생 등의 문제를 해결하기 위한 체계적인 시스템 마련이 요구되며, 향후 데이터 과학자들에 대한 수요 급증에 대비하기 위해 빅데이터분석 실무 능력을 평가하기 위한 바람직한 제도와 정책이 병행되어야 한다.
International Journal of Internet, Broadcasting and Communication
/
v.11
no.3
/
pp.41-48
/
2019
The Management Discussion and Analysis(MD&A) provides investors with an opportunity to gain insight into the company from a manager's perspective and enables short-term and long-term analysis of the business. And MD&A is an important channel through which companies and investors can communicate, providing a useful source of information for analyzing financialstatements. MD&A is measured by the quality of disclosure and there are many previous studies on the usefulness of disclosure information. Therefore, it is very important for the financial analyst who is the representative information user group in the capital market that MD&A Disclosure Quality is measured in real-time in combination with IT information technology and provided timely to financial analyst. In this study, we propose a method that real-time data is converted to digitalized data by combining MD&A disclosure with IT information technology and provided to financial analyst's information environment in real-time. The real-time information provided by MD&A can help the financial analysts' activities and reduce information asymmetry.
The Journal of Asian Finance, Economics and Business
/
v.6
no.2
/
pp.45-54
/
2019
This study examines whether auditors restrain the analysts' opportunistic behavior as reviewing the companies' interim reports. Analysts' forecasts show a walkdown pattern in which their optimism has decreased as the earnings announcement date has approached. At the beginning of the year, there is a lack of high-quality benchmark information that enables information users to judge the accuracy of analyst's earnings forecasts. Thus, early in the year, analysts are highly inspired to disseminate optimistic forecasts in order to gain manager's favor. In this study, we examine adequate benchmarks prevent analysts from disclosing optimistically biased forecasts. We conjecture that auditors' efforts might mitigate analysts' walkdown pattern. To test this hypothesis, we use data from Korea, where it is mandatory to disclose auditor's review hours. We find that the analyst forecast's walkdown decreases with the ratio as well as the number of audit hours. It implies that an auditor's effort in reviewing interim financial information has a monitoring function that reduces analysts' opportunistic optimism at the beginning of the year. We conjecture that the tendency will be more pronounced when BIG4 auditors review the interim reports. Consistent with the prediction, BIG4 auditors' interim review effort is more effective in suppressing the analysts' walkdown.
International journal of advanced smart convergence
/
v.7
no.3
/
pp.73-78
/
2018
This study focuses on presenting the IT program module provided by BKLS measure in order to solve the problem of capital cost due to information asymmetry of external investors and corporate executives. Barron at al(1998) set up a BKLS measure to guide the market by intermediate analysts. The BKLS measure was measured by using the changes in the analyst forecast dispersion and analyst mean forecast error squared. This study suggests a model of the algorithm that the BKLS measure can be provided to all investors immediately by IT program in order to deliver the meaningful value in the domestic capital market as measured. This is a method of generating and analyzing real-time or non-real-time prediction models by transferring the predicted estimates delivered to the Big Data Log Analysis System through the statistical DB to the statistical forecasting engine. Because BKLS measure is not carried out in a concrete method, it is practically very difficult to estimate the BKLS measure. It is expected that the BKLS measure of Barron at al(1998) introduced in this study and the model of IT module provided in real time will be the starting point for the follow-up study for the introduction and realization of IT technology in the future.
International journal of advanced smart convergence
/
v.7
no.2
/
pp.86-94
/
2018
This study focuses on presenting the IT program module provided by real - time forecasting and database of the voluntary disclosure quality measure in order to solve the problem of capital cost due to information asymmetry of external investors and corporate executives. This study suggests a model of the algorithm that the quality of real - time voluntary disclosure can be provided to all investors immediately by IT program in order to deliver the meaningful value in the domestic capital market. This is a method of generating and analyzing real-time or non-real-time prediction models by transferring the predicted estimates delivered to the Big Data Log Analysis System through the statistical DB to the statistical forecasting engine.
International journal of advanced smart convergence
/
v.8
no.3
/
pp.193-200
/
2019
Accruals-Quality(AQ) is an important proxy for evaluating the quality of accounting information disclosures. High-quality accounting information will provide high predictability and precision in the disclosure of earnings and will increase the response to stock prices. And high Accruals-Quality, such as mitigating heterogeneity in accounting information interpretation, provides information usefulness in capital markets. The purpose of this study is to suggest how AQ, which represents the quality of accounting information disclosure, is transformed into digitized data in real-time in combination with IT information technology and provided to financial analyst's information environment in real-time. And AQ is a framework for predictive analysis through big data log analysis system. This real-time information from AQ will help financial analysts to increase their activity and reduce information asymmetry. In addition, AQ, which is provided in real time through IT information technology, can be used as an important basis for decision-making by users of capital market information, and is expected to contribute in providing companies with incentives to voluntarily improve the quality of accounting information disclosure.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.1
/
pp.32-41
/
2023
Recently, many studies are being conducted to extract emotion from text and verify its information power in the field of finance, along with the recent development of big data analysis technology. A number of prior studies use pre-defined sentiment dictionaries or machine learning methods to extract sentiment from the financial documents. However, both methods have the disadvantage of being labor-intensive and subjective because it requires a manual sentiment learning process. In this study, we developed a financial sentiment dictionary that automatically extracts sentiment from the body text of analyst reports by using modified Bayes rule and verified the performance of the model through a binary classification model which predicts actual stock price movements. As a result of the prediction, it was found that the proposed financial dictionary from this research has about 4% better predictive power for actual stock price movements than the representative Loughran and McDonald's (2011) financial dictionary. The sentiment extraction method proposed in this study enables efficient and objective judgment because it automatically learns the sentiment of words using both the change in target price and the cumulative abnormal returns. In addition, the dictionary can be easily updated by re-calculating conditional probabilities. The results of this study are expected to be readily expandable and applicable not only to analyst reports, but also to financial field texts such as performance reports, IR reports, press articles, and social media.
Artificial intelligence technology, which is the core of the 4th industrial revolution, is making intelligent judgments through deep learning techniques and machine learning that it is impossible to predict if it is applied to stock prediction beyond human capabilities. In US fund management companies, artificial intelligence is replacing the role of stock market analyst, and research in this field is actively underway. In this study, we use BLSTM to reduce errors that occur in unidirectional prediction of the existing LSTM method, reduce errors in predictions by predicting in both directions, and macroscopic indicators that affect stock prices, namely, economic growth rate, economic indicators, interest rate, analyze the trade balance, exchange rate, and volume of currency. To help stock investment by accurately predicting the target price of stocks by analyzing the PBR, BPS, and ROE of individual stocks after analyzing macro-indicators, and by analyzing the purchase and sale quantities of foreigners, institutions, pension funds, etc., which have the most influence on stock prices.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.