• Title/Summary/Keyword: bidirectional DC/DC converter

Search Result 291, Processing Time 0.02 seconds

High Efficiency Resonant Converter for Bidirectional Power Transfer (고효율 특성을 갖는 양방향 공진컨버터)

  • Park, Jun-Hyoung;Lee, Seung-Min;Kim, Eun-Soo;Hwang, In-Gab;Kong, Young Su
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.429-436
    • /
    • 2013
  • In this paper, For achieving the high gain and resonant characteristics in both of the power flow directions, a bidirectional resonant dc-dc converter with auxiliary switches is proposed. Auxiliary switches are connected in the primary and secondary side of the bidirectional resonant dc-dc converter, respectively. A 800W prototype bidirectional resonant dc-dc converter for interfacing the 400V DC buses in the energy storage system is built and tested to verify the validity and applicability of this proposed converter.

A Design of ZVS DC-DC Converter applied to Electric Vehicle (전기자동차용 양방향 ZVS DC-DC 컨버터 설계)

  • Son, Ho-In;Kim, Chang-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.982-987
    • /
    • 2012
  • The power supply devices applied to the electric vehicle are required for high efficiency and high power density. This paper presents a bidirectional ZVS DC-DC converter. A bidirectional DC-DC converter using the planar transformer has advantages of high efficiency, simple circuit, and lightweight. The operating principle, theoretical analysis, and design guidelines are provided in this paper. The simulation waveforms of the proposed converter are shown to verify its feasibility.

Performance Improvement of a Bidirectional DC-DC Converter for Battery Chargers using an LCLC Filter

  • Moon, Sang-Ho;Jou, Sung-Tak;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.560-573
    • /
    • 2015
  • In this paper, a battery charger is introduced for an interleaved DC-DC converter with an LCLC filter. To improve the overall performance of the DC-DC converter for battery charger, a method is proposed. First, the structure of the system is presented. Second, an LC filter is compared to an LCLC filter in terms of the response characteristics and size. Third, the small-signal model of a bidirectional DC-DC converter using a state-space averaging method and the required transfer functions are introduced. Next, the frequency characteristics of the converter are discussed. Finally, the simulation and experimental results are analyzed to verify the proposed state space of the bidirectional converter.

Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation (입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법)

  • Sun, Daun;Jung, Jae-Hun;Nho, Eui-Cheol;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.

New Bidirectional ZVS PWM Sepic/Zeta DC-DC Converter (새로운 양방향 ZVS PWM Sepic/Zeta DC-DC 컨버터)

  • Kim, In-Dong;Paeng, Seong-Hwan;Park, Sung-Dae;Nho, Eui-Cheol;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.301-310
    • /
    • 2007
  • Bidirectional DC-DC converters allow transfer of power between two dc sources, in either direction. Due to their ability to reverse the direction of flow of power, Dey are being increasingly used in many applications such as battery charge/dischargers, do uninterruptible power supplies, electrical vehicle motor drives, aerospace power systems, telecom power supplies, etc. This Paper Proposes a new bidirectional Sepic/Zeta converter. It has low switching loss and low conduction loss due to auxiliary communicated circuit and synchronous rectifier operation, respectively Because of positive and buck/boost-like DC voltage transfer function(M=D/1-D), the proposed converter is very desirable for use in distributed power system. The proposed converter also has both transformer-less version and transformer one.

Selection of Coupling Factor for Minimum Inductor Current Ripple in Multi-winding Coupled Inductor Used in Bidirectional DC-DC Converters

  • Kang, Taewon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.879-891
    • /
    • 2018
  • A bidirectional dc-dc converter is used in battery energy storage systems owing to the growing requirements of a charging and discharging mode of battery. The magnetic coupling of output or input inductors in parallel-connected multi modules of a bidirectional dc-dc converter is often utilized to reduce the peak-to-peak ripple size of the inductor current. This study proposes a novel design guideline to achieve minimal ripple size of the inductor current under bidirectional power flow. The newly proposed design guideline of optimized coupling factor is applicable to the buck and boost operation modes of a bidirectional dc-dc converter. Therefore, the coupling factor value of the coupled inductor does not have to be optimized separately for buck and boost operation modes. This new observation is explained using the theoretical model of coupled inductor and confirmed through simulation and experimental test.

Study of Bidirectional DC-DC Converter Interfacing Energy Storage for Vehicle Power Management Using Real Time Digital Simulator (RTDS)

  • Deng, Yuhang;Foo, Simon Y.;Li, Hui
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.479-489
    • /
    • 2011
  • The bidirectional dc-dc converter, being the interface between Energy Storage Element (ESE) and DC bus, is an essential component of the power management system for vehicle applications including electric vehicle (EV), hybrid electric vehicle (HEV), and fuel cell vehicle (FCV). In this paper, a novel multiphase bidirectional dc-dc converter interfacing with battery to supply and absorb the electric energy in the FCV system was studied with the help of real time digital simulator (RTDS). The mathematical models of fuel cell, battery and dc-dc converter were derived. A power management strategy was developed and first simulated in RTDS. A Power Hardware-In-the-Loop (PHIL) simulation using RTDS is then presented. The main challenge of this PHIL is the requirement for a highly dynamic bidirectional Simulation-Stimulation (Sim-Stim) interface. This paper describes three different interface algorithms. The closed-loop stability of the resulting PHIL system is analyzed in terms of time delay and sampling rate. A prototype bidirectional Sim-Stim interface is designed to implement the PHIL simulation.

Integrated Bidirectional Three-Port DC-DC Converter with Ripple-Free Input Current and Soft Switching

  • KhademiAstaneh, Parastou;Javidan, Javad;Valipour, Khalil;Akbarimajd, Adel
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1293-1302
    • /
    • 2018
  • Multiport power converters have recently become popular to researchers and engineers. However, more improvements are required in terms of their soft-switching operation, bidirectional operation, and integration. In this study, a bidirectional three-port three-switch DC-DC converter is proposed. The converter contains a low-current ripple port and ripple-free current port. Through the integrated structure, utilization of a coupled inductor, and a new switching strategy, the aforementioned specifications are achieved. A modified switching strategy is also utilized in the converter, which has resulted in the bidirectional operation of the converter between ports. Finally, a comprehensive analysis is presented, and the converter characteristics are validated by experimental results.

A New Voltage Balancer With Bidirectional DC-DC Converter Function for EV Charging Station (전기자동차 충전소용 양방향 DC-DC 컨버터 기능을 갖는 전압 밸런서)

  • Nam, Hyun-Taek;Kim, Sanghun;Cha, Honnyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.313-320
    • /
    • 2018
  • This study proposes a new voltage balancer with bidirectional DC-DC converter function. The proposed balancer can serve as a voltage balancer and a bidirectional DC-DC converter. Thus, the balancer can be applied to battery management systems or fast chargers in electric vehicles (EVs) charging stations while balancing bipolar DC bus voltages. The proposed system has unlimited voltage balancing range unlike the conventional voltage balancing control using a three-level DC-DC converter. A comparison of the voltage balancing range between the proposed and conventional scheme is explored to confirm this superiority. Simulation and experimental results are provided to validate the effectiveness of the proposed system.

Bidirectional LLC-LC Resonant Converter With Notch Filter (노치 필터 적용 양방향 LLC-LC 공진컨버터)

  • Jang, Ki-Chan;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.411-420
    • /
    • 2021
  • In this paper, bidirectional LLC-LC resonant DC-DC converter with notch filters in the primary side of resonant circuits is proposed. Even if resonant capacitors are used on the primary and secondary sides, the proposed converter can operate with the high gain characteristics of the LLC resonant converter without mutual coupling of resonant capacitors, regardless of the direction of power flow. In addition, by applying notch filters, the proposed converter can operate with a wider gain control range and can cope with overload and short circuit. The analysis and operating characteristics of the proposed bidirectional LLC-LC resonant converter are investigated. A 3.3 kW prototyped bidirectional LLC-LC resonant converter connected to 750 VDC buses is designed and tested to verify the validity and applicability of this proposed converter.