• Title/Summary/Keyword: bicuculline

Search Result 52, Processing Time 0.017 seconds

Anxiolytic-Like Effects of Chrysanthemum indicum Aqueous Extract in Mice: Possible Involvement of GABAA Receptors and 5-HT1A Receptors

  • Hong, Sa-Ik;Kwon, Seung-Hwan;Kim, Min-Jung;Ma, Shi-Xun;Kwon, Je-Won;Choi, Seung-Min;Choi, Soo-Im;Kim, Sun-Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.413-417
    • /
    • 2012
  • Chrysanthemum indicum Linne is an ancient herbal medicine used to treat bone and muscle deterioration, ocular inflammation, headache, and anxiety in Korea, China, and Japan. Furthermore, tea derived from Chrysanthemum indicum Linne has been used to treat anxiety by facilitating relaxation and curing insomnia. However, no reports exist on the anxiolytic-like effects of Chrysanthemum indicum Linne water extract (CWE) in mice. In the present study, we investigated the anxiolytic-like effects of CWE using the elevated plus-maze (EPM) test in mice. CWE, at a dose of 500 mg/kg (p.o.), significantly increased the time spent in the open arms of the EPM compared to a vehicle-injected control group. Moreover, the effect of CWE (500 mg/kg) was blocked by bicuculline (a selective $GABA_A$ receptor antagonist) and WAY 100635 (a selective 5-$HT_{1A}$ receptor antagonist). Taken together, these findings suggest that the anxiolytic-like effects of CWE might be mediated by the $GABA_A$ receptor and the 5-$HT_{1A}$ receptor.

Are Spinal GABAergic Elements Related to the Manifestation of Neuropathic Pain in Rat?

  • Lee, Jae-Hee;Back, Seung-Keun;Lim, Eun-Jeong;Cho, Gyu-Chong;Kim, Myung-Ah;Kim, Hee-Jin;Lee, Min-Hee;Na, Heung-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.59-69
    • /
    • 2010
  • Impairment in spinal inhibition caused by quantitative alteration of GABAergic elements following peripheral nerve injury has been postulated to mediate neuropathic pain. In the present study, we tested whether neuropathic pain could be induced or reversed by pharmacologically modulating spinal GABAergic activity, and whether quantitative alteration of spinal GABAergic elements after peripheral nerve injury was related to the impairment of GABAergic inhibition or neuropathic pain. To these aims, we first analyzed the pain behaviors following the spinal administration of GABA antagonists ($1{\mu}g$ bicuculline/rat and $5{\mu}g$ phaclofen/rat), agonists ($1{\mu}g$ muscimol/rat and $0.5{\mu}g$ baclofen/rat) or GABA transporter (GAT) inhibitors ($20{\mu}g$ NNC-711/rat and $1{\mu}g$ SNAP-5114/rat) into naive or neuropathic animals. Then, using Western blotting, PCR or immunohistochemistry, we compared the quantities of spinal GABA, its synthesizing enzymes (GAD65, 67) and its receptors (GABAA and GABAB) and transporters (GAT-1, and -3) between two groups of rats with different severity of neuropathic pain following partial injury of tail-innervating nerves; the allodynic and non-allodynic groups. Intrathecal administration of GABA antagonists markedly lowered tail-withdrawal threshold in naive animals, and GABA agonists or GAT inhibitors significantly attenuated neuropathic pain in nerve-injured animals. However, any quantitative changes in spinal GABAergic elements were not observed in both the allodynic and non-allodynic groups. These results suggest that although the impairment in spinal GABAergic inhibition may play a role in mediation of neuropathic pain, it is not accomplished by the quantitative change in spinal elements for GABAergic inhibition and therefore these elements are not related to the generation of neuropathic pain following peripheral nerve injury.