• 제목/요약/키워드: bi-orthogonal decomposition

검색결과 4건 처리시간 0.018초

Processing of dynamic wind pressure loads for temporal simulations

  • Hemon, Pascal
    • Wind and Structures
    • /
    • 제21권4호
    • /
    • pp.425-442
    • /
    • 2015
  • This paper discusses the processing of the wind loads measured in wind tunnel tests by means of multi-channel pressure scanners, in order to compute the response of 3D structures to atmospheric turbulence in the time domain. Data compression and the resulting computational savings are still a challenge in industrial contexts due to the multiple trial configurations during the construction stages. The advantage and robustness of the bi-orthogonal decomposition (BOD) is demonstrated through an example, a sail glass of the Fondation Louis Vuitton, independently from any tentative physical interpretation of the spatio-temporal decomposition terms. We show however that the energy criterion for the BOD has to be more rigorous than commonly admitted. We find a level of 99.95 % to be necessary in order to recover the extreme values of the loads. Moreover, frequency limitations of wind tunnel experiments are sometimes encountered in passing from the scaled model to the full scale structure. These can be alleviated using a spectral extension of the temporal function terms of the BOD.

MJO의 다중스케일 분석을 통한 수십년 변동성 (A multi-scale analysis of the interdecadal change in the Madden-Julian Oscillation)

  • 이상헌;서경환
    • 대기
    • /
    • 제21권2호
    • /
    • pp.143-149
    • /
    • 2011
  • A new multi-timescale analysis method, Ensemble Empirical Mode Decomposition (EEMD), is used to diagnose the variation of the MJO activity determined by 850hPa and 200hPa zonal winds from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data for the 56-yr period from 1950 to 2005. The results show that MJO activity can be decomposed into 9 quasi-periodic oscillations and a trend. With each level of contribution of the quasi-periodic oscillation discussed, the bi-seasonal oscillation, the interannual oscillation and the trend of the MJO activity are the most prominent features. The trend increases almost linearly, so that prior to around 1978 the activity of the MJO is lower than that during the latter part. This may be related to the tropical sea surface temperature(SST). It is speculated that the interdecadal change in the MJO activity appeared in around 1978 is related to the warmer SST in the equatorial warm pool, especially over the Indian Ocean.

Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads

  • Di Paola, M.;Muscolino, G.;Sofi, A.
    • Wind and Structures
    • /
    • 제7권2호
    • /
    • pp.107-130
    • /
    • 2004
  • This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This procedure starts by generating sample functions of the generalized aerodynamic loads by using the spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure according to which just the first few significant loading and structural modal contributions are retained.

The Fast Lifting Wavelet Transform for Image Coding

  • Shin, Jonghong;Jee, InnHo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1015-1018
    • /
    • 2002
  • We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed onto a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures, We present a self-contained derivations, building the decomposition from the basic principles such as the Euclidean algorithm, with a focus on a applying it to wavelet filtering. This factorization provides an alternative for the lattice factorization, with the advantage that it can also be used in the bi-orthogonal, i.e, non-unitary case. Lifting leads to a speed-up when compared to the standard implementation. We show that this lifting scheme can be applied in image compression efficiently

  • PDF