• 제목/요약/키워드: bi-fuel engine

검색결과 16건 처리시간 0.019초

선박용 가솔린/CNG Bi-fuel 엔진개조 기술 개발 (A Development of Converting Technology for the Marine Gasoline/CNG Bi-fuel Engine)

  • 박명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권5호
    • /
    • pp.632-637
    • /
    • 2010
  • 천연가스는 메탄을 주성분으로 하는 청정한 대체연료로 자동차나 트럭 등에 압축천연가스와 액화천연가스 형태로 사용할 수 있다. 그리고, 천연가스만을 사용하는 전소엔진과 가솔린 및 천연가스를 동시에 사용할 수 있는 겸용엔진이 있으며, 특히, 겸용엔진의 경우 두가지 연료를 동시에 사용할 수 있는 것으로 정의할 수 있다. 본 연구에서는 선박용 가솔린 시스템을 인젝터, 레귤레이터, 연료탱크 및 전자제어장치로 구성된 압축 천연가스 겸용시스템으로 전환시켜 연료시스템과 동력값을 비교하였다. 그 결과, 천연가스엔진의 경우 적은 배출가스를 나타내었으며 최대동력은 가솔린엔진과 비교 약 7%정도 감소함을 확인할 수 있었다.

LPG / 가솔린 겸용차량의 점화시기 변환에 의한 엔진성능고찰 (A Study on Engine Performance of the Ignition Spark Timing Conversion for LPG/Gasoline Bi-fuel Vehicle)

  • 전봉준;박명호
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.39-47
    • /
    • 2011
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the optimum performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its higher ignition temperature. The purpose of this study is to investigate how the ignition spark timing conversion influences the engine performance of LPG/Gasoline Bi-Fuel engine. In order to investigate the engine performance during combustion, engine performance are sampled by data acquisition system, for example cylinder pressure, pressure rise rate and heat release rate, while change of the rpm(1500, 2000, 2500) and the ignition timing advance($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$). As the result, between 1500rpm, 2000rpm and 2500rpm, the cylinder pressure and pressure rise rate was increased when the spark ignition was advanced but pressure rise rate at $20^{\circ}$ was smaller value.

LPG 및 Gasoline 겸용 차량의 엔진 점화시기 변환 제어시스템 개발 (The Development of the Ignition Spark Timing Conversion System for LPG/Gasoline Bi-fuel Vehicle)

  • 전봉준;양인권;김재국;김성준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.117-123
    • /
    • 2003
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the effective performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its lower flame speed, due to engine torque drop. This study aims to develop the control system for ignition spark timing conversion which is composed of hardwares and control algorithm for gasoline/LPG engine. We propose the control system which can advance the ignition spark timing in LPG fuel mode more than used in gasoline fuel mode. The advance of ignition timing is achieved by change of the ignition dwell time of coil igniter. The engine torque and F/E(Fuel-Economy) in LPG fuel mode are measured to evaluate the difference of engine performance between before and alter changing ignition spark timings. The engine torque and F/E are increased respectively, which proves the developed control system is effective so much for gasoline and LPG bi-fuel engine.

Performance Analysis and Emission Characteristics of a Bi-fuel Using Spark Ignition Engine

  • Mahmud, Md. Iqbal;Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권3호
    • /
    • pp.351-359
    • /
    • 2010
  • Bi-fuel system in a spark ignition engine (SIE) is a rising phenomena in today's automobile technology. In a gasoline driven vehicle, alternatively adoption of compressed natural gas (CNG) could be used as a potential substitute to meet the energy requirement and this is possible by some minor changes in the hardware of the existing engine. Gasoline engine is widely used in the passenger cars, light, medium and heavy duty vehicles but the consumption status of the petroleum is decreasing worldwide and at the same time environmental pollution from automobiles is seriously establishes as a threat for every nation in respect to global warming and climate changes. Now-a-days most vehicles operate using CNG for its popularity stems, clean burning properties and cost effective solution compared to other alternative fuels. It refers as a good gaseous fuel because of its high octane number and self ignition temperature. Though the power output is slightly lesser than the gasoline fuel; its thermal efficiency is better than the gasoline for the same SIE. The research paper highlights the reduction of CO, reasonable outcomes of HC emissions with minor increase in $NO_x$ emissions compared with the gasoline fuel to bi-fuel mode in the SIE that meets the emission challenges.

소형 트럭용 CNG/가솔린 겸용 엔진 개발과 성능 분석 (Development of CNG/Gasoline Bi-fuel engine for a small truck and the evaluation of engine performance)

  • 권오운;김재수;박용국;김성준
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.21-28
    • /
    • 2006
  • A diesel truck of 1 ton is re-powered by a gasoline engine and the fuelling system of gasoline engine modified to gasoline/CNG bi fuel system. The engine characteristics such as fuel economy and power are evaluated by driving rest, sloping test and dynamometer. The driving test prove the driving cost is saved by 55% and the maximum speed is raised by 13%, which is mainly due to the higher calorific value of CNG. The sloping test is done on the road of which slope is 15%. The truck shows the mean velocity of 88km/h, which means that a re-powered truck is working fine. The BHP are measured by dynamometer. The power and torque produced by a re-powered truck are reduced by 13% and 14% respectively from the power of gasoline engine. The BHP reduction is one of main problems which one has to solve in near future.

  • PDF

LPG/가솔린 Bi-Fuel 엔진성능에 관한 실험적 고찰 (An Experimental Study on Engine Performance of LPG/Gasoline Bi-Fuel)

  • 전봉준;박명호
    • 한국산학기술학회논문지
    • /
    • 제10권7호
    • /
    • pp.1433-1438
    • /
    • 2009
  • 본 논문의 목적은 점화시기의 변화가 LPG/가솔린 겸용차량에 미치는 영향을 살펴보기 위한 것으로 가솔린 전용연료 모드를 LPG 전용연료 모드로 진각시킨 제어시스템을 제안하여 엔진회전수(1500rpm, 2000rpm) 및 점화시기 ($5^{\circ}$,$10^{\circ}$,$15^{\circ}$,$20^{\circ}$)의 변화에 따른 실린더내의 가스압력, 압력상승률 및 열발생률을 측정하였다. 그 결과 실런더내의 가스압력 및 압력상승률은 기관의 회전속도가 1500rpm 및 2000rpm 모두 점화시기가 진각될수록 증가하였으나, $20^{\circ}$부근에서의 압력상승률값만 약간 낮게 나타났다. 또한, 열발생률은 1500rpm에서 점화시기가 진각될수록 증가하였으며 2000rpm의 $20^{\circ}$부근에서 감소하는 경향을 볼 수 있었다.

고순도 수소함량에 따른 HCNG 연소특성 및 배출가스 영향 평가 (The Effect on the Combustion and Emission Characteristics of HCNG Engine According to the High Purity Hydrogen Contents)

  • 이종태;임윤성;김형준;이성욱;이장훈;김종규
    • 한국분무공학회지
    • /
    • 제17권3호
    • /
    • pp.152-157
    • /
    • 2012
  • This investigation decribes the effect of the combustion and emission characteristics of HCNG engine according to the high purity hydrogen contents. The HCNG fuel was made by the mixture with a high purity hydrogen ($H_2$) and a natural gas. The test vehicle was applied to the bi-fuel (Gasoline and CNG) system and this system was modified from the fuel supply and fuel tank. In addition, the three premixed HCNG fuels with mixed rate of 10, 20 and 30% of hydrogen were used to maintain the safety. In order to analyze the combustion characteristics of HCNG and CNG, the fuel was injected in the combustor with constant volume. The exhaust emission from light duty vehicle with bi-fuel system was analyzed by a chassis dynamometer and emission analyzer. From these results, the reduction rate of NOx emission increased in the HCNG fuel and emission amount of THC and CO shows a similar level with CNG fuel. This study can be utilized the basic data for the development of a new business plans related with HCNG engines.

CNG/LPLI Bi-Fuel 자동차에서 주행시험 모드와 점화진각에 따른 배출가스 특성 (Exhaust Emissions Characteristics on Driving Cycle Mode and Ignition Advance Condition Change of CNG/LPLI Bi-Fuel Vehicle)

  • 조승완;김성훈;권석주;박성욱;전충환;서영호
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.40-46
    • /
    • 2014
  • Recently rise in oil prices feet the burden on not only diesel vehicle driver but also LPG vehicle driver, and get interested in various way to reduce fuel costs. In this study discuss on exhaust emissions characteristics on driving cycle mode and ignition advance condition change of CNG/LPLI Bi-Fuel vehicle. Experimental test was performed by changing the conditions of fuel (LPG/CNG), spark advance (Base, $10^{\circ}CA$, $15^{\circ}CA$), and driving mode (FTP-75, HWFET, and NEDC). In case of CO emission, in the order of CNG Base, CNG S/A10, S/A15 condition are average reduced -21%, -35%, -29% respectively compared to LPG fuel. The active emission reduction from the initial engine start, spark retard is likely to be beneficial in catalyst warm-up and improve combustion stability rather than spark advance.

CNG 승용 자동차의 배출가스 특성에 관한 실험적 연구 (Experimental Study of Emission Characteristics for CNG Passenger Car)

  • 김현준;이호길
    • 한국가스학회지
    • /
    • 제19권6호
    • /
    • pp.34-39
    • /
    • 2015
  • 최근 차량용 에너지의 소비는 대부분 화석연료로부터 사용된다. 기존 화석 연료를 사용하는 자동차보다 친환경적이며 저렴하고 재생이 가능한 연료의 요구증대로 대체연료 자동차산업이 강조되고 있다. 오늘날 고옥탄가와 높은 자기발화온도 특징을 가지고 있는 천연가스는 저렴한 비용, 기존 화석연료보다 풍부한 매장으로 기존 스파크 점화엔진인 가솔린엔진의 대체에너지로 간주되고 있다. 본 연구는 기존 2리터 가솔린 엔진에 CNG 가스 분사시스템을 장착하여 전소 및 혼소 연료분사시스템을 설치하였다. 또한 CNG전소 및 가솔린/CNG 혼소차량의 ECU 제어전략을 최적화 하였다. 혼소차량에 대하여 NEDC모드 주행결과 가솔린 차량 대비 혼소차량의 CO2 저감율을 16%확인하였다. 또한 CO와 HC의 배기가스 배출량은 가솔린 차량과 동등한 수준을 확보하였다. 하지만 NOx의 배기가스 배출수준은 증가된 현상을 확인할 수 있었다.

디젤연소가능 청정연료(ULSD, Bio-Diesel, DME)엔진의 극미세입자 정량화 및 촉매 영향 (Characteristics of Nano-particle Emitted by Auto-ignited Engine with ULSD, Bio-diesel and DME Fuel and Effects of Oxidation Catalyst on Its Reduction)

  • 이진욱;배충식
    • 한국자동차공학회논문집
    • /
    • 제17권3호
    • /
    • pp.81-89
    • /
    • 2009
  • In this experimental study, the effects of clean alternative fuels compatible with diesel combustion on nano-sized particle emission characteristics were investigated in a 0.5L auto-ignited single-cylinder engine with a compression ratio of 15. Because the number concentration of nano-sized particles emitted by automotive engine, that are suspected of being hazardous to human health and environment, might increase with engine fuel considerably and recently attracted attention. So a ultra-low sulfur diesel(ULSD), BD100(100% bio-diesel) and Di-Methyl Ether(DME) fuels used for this study. And, as a particle measuring instrument, a fast-response particle spectrometer (DMS 500) with heated sample line was used for continuous measurement of the particle size and number distribution in the size range of 5 to 1000nm (aerodynamic diameter). As this research results, we found that this measurements involving the large proportion of particles under size order of 300nm and number concentration of $4{\times}10^9$ allowed a single or bi-modal distribution to be found at different engine load conditions. Also the influence of oxygen content in fuel and the catalyst could be a dominant factor in controlling the nano-sized particle emissions in auto-ignited engine.