• Title/Summary/Keyword: berthing

Search Result 175, Processing Time 0.022 seconds

Vision Sensor and Deep Learning-based Around View Monitoring System for Ship Berthing (비전 센서 및 딥러닝 기반 선박 접안을 위한 어라운드뷰 모니터링 시스템)

  • Kim, Hanguen;Kim, Donghoon;Park, Byeolteo;Lee, Seung-Mok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.71-78
    • /
    • 2020
  • This paper proposes vision sensors and deep learning-based around view monitoring system for ship berthing. Ship berthing to the port requires precise relative position and relative speed information between the mooring facility and the ship. For ships of Handysize or higher, the vesselships must be docked with the help of pilots and tugboats. In the case of ships handling dangerous cargo, tug boats push the ship and dock it in the port, using the distance and velocity information receiving from the berthing aid system (BAS). However, the existing BAS is very expensive and there is a limit on the size of the vessel that can be measured. Also, there is a limitation that it is difficult to measure distance and speed when there are obstacles near the port. This paper proposes a relative distance and speed estimation system that can be used as a ship berthing assist system. The proposed system is verified by comparing the performance with the existing laser-based distance and speed measurement system through the field tests at the actual port.

Modeling and controller design of crabbing motion for auto-berthing (선박 자동접안을 위한 순수 횡 이동 모델링 및 제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.56-64
    • /
    • 2013
  • Crabbing motion is the pure sway motion of a ship without surge velocity. Thus, it can be applied to a berthing operation. Crabbing motion is induced by a peculiar operation method called the push-pull mode. The push-pull mode is induced by using a combination of the main propeller and side thruster. Two propellers generating the same amounts of thrust and rotating in opposite directions produce some yawing moment on a vessel but do not induce longitudinal motion. With the additional operation of side thrusters, the push-pull mode is used to induce a large amount of lateral force. In this paper, three-degree-of-freedom equations of motion such as for the surge, sway, and yaw are constructed for the crabbing motion. Based on these equations of motion, a feedback linearization control method is applied to auto-berthing control for a twin-screw ship with side thrusters. The controller can deal with the nonlinearity of a system, which is present in the berthing maneuver of a twin screw ship. A simulation of the auto-berthing of a ship is performed to validate the performance of the designed controller.

Development of AI-based Mooring Lines Recognition to Check Mooring Time (선박 접/이안 상황 계선줄 인식을 위한 인공지능 모델 개발)

  • Hanguen Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.445-446
    • /
    • 2022
  • In this paper, in order to improve port work preparation and berth scheduling efficiency in an artificial intelligence-based berthing monitoring system that can monitor the ship's berthing process, we develop a mooring line recognition model to check an exact berthing time. By improving the pre-designed AI model, it is possible to segment the mooring line from the input image, and to recognize when the mooring line arrives or falls on the berth, thereby providing the correct ship's berthing time. The proposed AI model confirmed by the results that mooring line recognition is possible with evaluation data about the actual berthing situation.

  • PDF

Analysis of Feature Importance of Ship's Berthing Velocity Using Classification Algorithms of Machine Learning (머신러닝 분류 알고리즘을 활용한 선박 접안속도 영향요소의 중요도 분석)

  • Lee, Hyeong-Tak;Lee, Sang-Won;Cho, Jang-Won;Cho, Ik-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.139-148
    • /
    • 2020
  • The most important factor affecting the berthing energy generated when a ship berths is the berthing velocity. Thus, an accident may occur if the berthing velocity is extremely high. Several ship features influence the determination of the berthing velocity. However, previous studies have mostly focused on the size of the vessel. Therefore, the aim of this study is to analyze various features that influence berthing velocity and determine their respective importance. The data used in the analysis was based on the berthing velocity of a ship on a jetty in Korea. Using the collected data, machine learning classification algorithms were compared and analyzed, such as decision tree, random forest, logistic regression, and perceptron. As an algorithm evaluation method, indexes according to the confusion matrix were used. Consequently, perceptron demonstrated the best performance, and the feature importance was in the following order: DWT, jetty number, and state. Hence, when berthing a ship, the berthing velocity should be determined in consideration of various features, such as the size of the ship, position of the jetty, and loading condition of the cargo.

A Study on the Concept Design of Automatic Vessel Berthing Program (선박자동접안 프로그램 개념설계에 관한 연구)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.857-862
    • /
    • 2023
  • In order for an autonomous ship to arrive near the pier and automatically berth without the help of a tugboat or pilot, it is necessary to recognize the pier and calculate the thruster output and output angle for berthing to the pier at a fixed berthing speed under given external force conditions. Therefore, in this study, the external force and moment acting on the ship while berthing were analyzed, and the thruster output calculation for automatic berthing was designed and the basic concept for the development of the automatic berthing program was designed. The wind pressure applied to the hull by the wind while the ship is berthing was calculated based on the wind pressure area and the wind direction angle and the turning moment to rotate the ship according to the transverse force of the ship was calculated. Considering the force acting on the ship and the turning moment during berthing, a theoretical formula was presented to calculate the thruster output and output angle for berthing parallel to the pier, and the turning due to other variables was controlled by the PID controller. In addition, the basic concept for program development was presented by analyzing the input elements necessary for the theoretical formula.

Real-time Detection Technique of the Target in a Berth for Automatic Ship Berthing (선박 자동접안을 위한 정박지 목표물의 실시간 검출법)

  • Choi, Yong-Woon;;Kim, Young-Bok;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.431-437
    • /
    • 2006
  • In this paper vector code correlation(VCC) method and an algorithm to promote the image-processing performance in building an effective measurement system using cameras are described far automatically berthing and controlling the ship equipped with side-thrusters. In order to realize automatic ship berthing, it is indispensable that the berthing assistant system on the ship should continuously trace a target in the berth to measure the distance to the target and the ship attitude, such that we can make the ship move to the specified location. The considered system is made up of 4 apparatuses compounded from a CCD camera, a camera direction controller, a popular PC with a built-in image processing board and a signal conversion unit connected to parallel port of the PC. The object of this paper is to reduce the image-processing time so that the berthing system is able to ensure the safety schedule against risks during approaching to the berth. It could be achieved by composing the vector code image to utilize the gradient of an approximated plane found with the brightness of pixels forming a certain region in an image and verifying the effectiveness on a commonly used PC. From experimental results, it is clear that the proposed method can be applied to the measurement system for automatic ship berthing and has the image-processing time of fourfold as compared with the typical template matching method.

3D A*-based Berthing Path Planning Algorithm Considering Path Following Suitability (경로 추종 적합성 고려 3D A* 기반 접안 경로 계획 알고리즘 개발)

  • Yeong-Ha Shin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.351-356
    • /
    • 2022
  • Among the path planning methods used to generate the ship's path, the graph search-based method is widely used because it has the advantage of its completeness, optimality. In order to apply the graph-based search method to the berthing path plan, the deviation from the path must be minimized. Path following suitability should be considered essential, since path deviation during berthing can lead to collisions with berthing facilities. However, existing studies of graph search-based berthing path planning are dangerous for application to real-world navigation environments because they produce results with a course change just before berthing. Therefore, in this paper, we develop a cost function suitable for path following, and propose a 3D A* algorithm that applies it. In addition, in order to evaluate the suitability for the actual operating environment, the results of the path generation of the algorithm are compared with the trajectory of the data collected by manned operations.

  • PDF

Distance Measurement System using A Stereo Camera and Radial Pattern Target for Automatic Berthing Control

  • Mizuchi, Yoshiaki;Ogura, Tadashi;Hagiwara, Yoshinobu;Suzuki, Akimasa;Kim, Youngbok;Choi, Yongwoon
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.121-127
    • /
    • 2013
  • In this paper, we propose a distance measurement system for automatic berthing control using a stereo camera mounted on a rotation control device, and a radial pattern target. Automatically controlling the position and attitude of a ship aims to prevent maritime accidents due to human error. Our goal is to measure the relative distance between a ship and an onshore or offshore target for berthing. Therefore, the distance should be continuously measured while tracking a fixed point on a target. To this end, we developed a stereo camerabased distance measurement system that satisfied these requirements. This paper describes the structure and principle of the measurement system. We validate the distance error for target incline due to the relative position and attitude between a camera and a target in miniature scale. In addition, the findings of an experiment in an outdoor environment demonstrate that the proposed measurement system has accuracy within 1 m at a range of 20-100 m which is the acceptable accuracy for automatic berthing.

The Prediction of Hydrodynamic Forces Acting on Ship Hull Undergoing Lateral Berthing Maneuver Using CFD (CFD을 이용한 선박 접이안시 유체력 추정에 관한 연구)

  • 이윤석;정겸광행;공길영;김순값;이충로
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.132-138
    • /
    • 2003
  • In order to evaluate properly ship motion relating to the berthing maneuver, the hydrodynamic forces acting on ship hull in berthing maneuver need to be estimated rightly. CFD has been employed for time-domain simulation of transient flow induced by Wigley model moving laterally from rest in shallow water. The numerical solutions successfully captured not only the characteristics of the transitional hydrodynamic forces but also some interesting features of the flow field around a berthing ship according to the water depth. In this paper, the consideration is carried out on the approximate formula based on the CFD results, which can estimate hydrodynamic forces especially lateral drag coefficient starting from the rest to the uniform movement.

  • PDF

A Ship Berthing System Design by Cooperating with Tugboats and Dampers (터그보트와 댐퍼 협조제어를 통한 선박접안시스템 설계에 관한 연구)

  • Tran, Anh-Minh D.;Ji, S.W.;Kim, Y.B.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.7-13
    • /
    • 2014
  • Everyday about 90% of cargos are delivered by ships, and thousands of vessels enter and depart the international container harbors such as Shanghai, Singapore, Hong Kong, Busan, Rotterdam, etc. Maneuvering at harbor is known as the most sophisticated and difficult procedure, because the effectiveness of actuators during low speed berthing is reduced. In this paper, a new berthing method is discussed. Tugboats are combined with damper systems to ensure safe berthing. A mathematical model describing the interaction between unactuated ship, tugboats and damper systems is presented. An optimal controller is designed to maneuver the ship without oscillation and overshoot. MCL (Marine Cybernetics Lab) model ship is used to evaluate the efficiency of the proposed approach through MatLab simulation.