• 제목/요약/키워드: benzene vapor gas

검색결과 28건 처리시간 0.028초

주유소 유증기 회수설비 사용에 따른 가솔린 증기의 개인노출양상 (Occupational Exposure Aspects of Gasoline Vapor According to the Use of a Gasoline Vapor Recovery System)

  • 이희명;원종욱;김치년;노재훈
    • 한국산업보건학회지
    • /
    • 제25권2호
    • /
    • pp.156-165
    • /
    • 2015
  • Objectives: The purpose of this study was to investigate the possible effects of a gasoline vapor recovery system on personal exposure levels of gasoline vapor constituents including benzene, toluene, ethyl benzene, xylene(BTEX), and methyl tert-butyl ether(MTBE) among gas station workers in a metropolitan area. Methods: Thirty-one gas station workers at ten gas stations in a metropolitan area were selected as subjects for this study. Test method PV2028 as recommended in the OSHA process was used for sampling and analysis. Results: The personal exposure levels of benzene, toluene, ethyl benzene, xylene, MTBE and gasoline vapor in the gas station workers were $0.0018{\pm}0.0069ppm$, $0.0077{\pm}0.0137ppm$, $0.0002{\pm}0.0008ppm$, $0.0016{\pm}0.0084ppm$, $0.2619{\pm}0.3340ppm$, and $1.4940{\pm}1.7984ppm$, respectively. After adjustment for refueling frequency and volume, personal exposure levelswere higher in the gas stations where gasoline vapor recovery systems(Stage II) were not installed, but the results were not statistically significant. Gasoline vapor concentrations showed a positive correlation to the level of MTBE, a gasoline additive. Conclusions: Vapor recovery systems(Stage II) were effective not only in reducing emissions of air pollutants, but also in reducing exposure to hazardous substances among gas station workers. In addition, acorrelation between gasoline vapors and MTBE concentration was confirmed.

퇴비 및 규산칼슘계 다공성 바이오필터의 벤젠휘발가스 처리 (Treatment of Benzene Vapor Gas with Compost and Calcium Silicate Porous Biofilters)

  • 박준석;남궁완;김순아;박영구;이노섭
    • 한국응용과학기술학회지
    • /
    • 제22권1호
    • /
    • pp.21-27
    • /
    • 2005
  • This study was conducted to evaluate the biofiltration treatment characteristic for benzene vapor gas. Compost and calcium silicate porous material were used as biofilter fillers. Gas velocity and empty bed retention time were 15 m/hr and 4 min, respectively. Benzene gas removal efficiency of P-Bio (calcium silicate porous material with inoculation) was the highest and maintained in over 98%. After shock input of benzene gas, the removal efficiency of P-Bio biofilter was recovered within 2 days, while 5 days were taken in CP-Bio (compost + calcium silicate porous material mixture with inoculation) and CP (compost + calcium silicate porous material mixture without inoculation) biofilters. The removal efficiency of P-Bio biofilter was near 100% in the loading rate of <$85g/m^3$(filling material)/hr, It was shown that the maximum elimination capacities of P-Bio, CP-Bio, and CP biofilters were 95, 69, and $66\;g/m^3$(filling material)/hr, respectively. Microbial number of P-Bio, which the number was the lowest at start-up, was 3 orders increased on operational day 48. $CO_2$ was generated greatly in order of P-Bio, CP-Bio, and CP biofilters.

기-액흐름 연속누출에 의한 개방공간 증기운 폭발사고의 영향평가 (The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Gas-Liquid Flow)

  • 장서일;이헌창;김태옥
    • 대한안전경영과학회지
    • /
    • 제4권3호
    • /
    • pp.35-43
    • /
    • 2002
  • For the unconfined vapor cloud explosion accident by the continuous release of gas-liquid flow of various saturated liquids in a vessel at ground level, overpressures were estimated and analyzed with various release conditions and materials by TNT equivalency model with vapor dispersion. We found that at same release conditions, overpressure showed n-heptane > xylene > n-hexane > toluene > n-heptane > benzene, respectively and that overpressure was increased with increasing the hole diameter and the storage pressure, but it was increased with decreasing the wind speed, the interested distance, and the vessel thickness.

유증기 회수설비 유무에 따른 주유소 근로자들의 요중 trans, trans-Muconic acid, Hippuric acid에 관한 연구 (A Study on Urinary Trans, Trans-Muconic acid, Hippuric acid of gas station worker according to the use of gasoline vapor recovery system)

  • 최재준;원종욱;김치년;노재훈
    • 한국산업보건학회지
    • /
    • 제24권2호
    • /
    • pp.152-159
    • /
    • 2014
  • Objectives: This study aims to investigate the excretion aspect of urinary t, t-MA and hippuric acid by measuring concentrations of urinary metabolites according to the use of gasoline vapor recovery system. Materials:In order to analyze urinary metabolites, samples from the 23 gas station workers ten gas stations in the Seoul and Gyeonggi Province area were collected once daily after work. In addition, a survey was conducted on work factors and lifestyle habits as factors affecting the concentration of urinary metabolites. Results: The average concentrations of t, t-MA and hippuric acid after work were $0.124{\pm}0.177mg/g$ creatinine and $0.557{\pm}0.251g/g$ creatinine among workers at gas stations where gasoline vapor recovery systems were installed. The average concentrations of t, t-MA and hippuric acid were $0.160{\pm}0.113mg/g$ creatinine and $0.682{\pm}0.619g/g$ creatinine among workes at gas stations where gasoline vapor recovery systems were not installed. Average concentrations were higher at gas stations where a gasoline vapor recovery system was not installed, but the differences were not statistically significant differences. Urinary t, t-MA and hippuric acid average concentrations of smokers and non-smokers were higher in the gas stations where gasoline a vapor recovery system was not installed. T, t-MA as a factor evaluation affecting the concentration of urinary metabolites was not statistically significant in all factors, while hippuric acid was statistically significant only for age(p=0.024). Conclusions: The average concentrations of urinary t, t-MA and hippuric acid were higher in gas stations where gasoline vapor recovery systems were not installed compared to gas stations where such a system was installed. There needs to be an assessment of biological monitoring according to refueling activity considering skin absorption of benzene and toluene and presence of gasoline vapor recovery system.

국내 일부 주유소 내에서의 휘발성 유기화합물 노출에 관한 연구 (A Study on Exposure to Volatile Organic Compounds at Gas Stations in Korea)

  • 송상환;백남원;하권철
    • 한국산업보건학회지
    • /
    • 제10권1호
    • /
    • pp.58-73
    • /
    • 2000
  • Objectives : This study was performed to evaluate BTEX exposure to gas station service attendants and the critical affect of benzene and MtBE airborne concentration. Methods : the degree of exposure to airborne BTEX and MtBE was examined in the service attendants at seven gas stations across the country during a summer season. The TWAs(time-weighted averages) of atmospheric concentration of substances in personal and area samples, were calculated. The component ratio of BTEX and MtBE in the samples of bulk gasoline from each station studied was also measured. Results : The airborne concentrations of BTEX and MtBE showed a lognormal distribution and The TWA concentrations of benzene in personal samples from each station were 0.089 ppm - 0.18 ppm, and those of toluene were 0.097 ppm - 0.2 ppm. The average TWA concentrations of xylene and ethyl benzene was 0.03 ppm and 0.001 ppm, respectively. The TWA concentrations of MtBE were 0.4 ppm - 1.3 ppm. The volume concentrations of MtBE, toluene, ethyl benzene and xylene in the bulk gasoline samples were 3 - 7.4 %, 3 - 12 %, 0.64 % and 1.5 - 10 %, respectively. Conclusions : The benzene concentration was detected to exceed the ACGIH threshold benzene level of 0.5 ppm, in one of 74 personal and area samples. MtBE, a substitute for aromatic compounds such as benzene in gasoline, was found to bring about a greater chance of exposure to carcinogen, due to its high vapor pressure and carcinogenicity.

  • PDF

박막 산화티타늄과 Sr4Al14O25 축광체를 조합한 복합소재의 벤젠가스에 대한 광촉매 반응 (The Photocatalytic Reaction of the Thin Film TiO2-Sr4Al14O25 Phosphors for Benzene Gas)

  • 김승우;김정식
    • 한국세라믹학회지
    • /
    • 제50권1호
    • /
    • pp.50-56
    • /
    • 2013
  • Phosphorescent materials coated with titanium dioxide were fabricated and photocatalytic reactions between these materials and VOCs gases were examined. A thin film (approx. 100 nm) of nanosized $TiO_2$ was deposited on the $Sr_4Al_{14}O_{25}$ : $Eu^{2+}$, $Dy^{3+}$, $Ag^+$ phosphor using low-pressure chemical vapor deposition (LPCVD). The characteristics of the photocatalytic reaction were examined in terms of the decomposition of benzene gas using a gas chromatography (GC) system under ultraviolet (${\lambda}$ = 365 nm) and visible light (${\lambda}$ > 420 nm) irradiation. $TiO_2$-coated $Sr_4Al_{14}O_{25}$ : $Eu^{2+}$, $Dy^{3+}$, $Ag^+$ phosphor showed different photocatalytic behavior compared with pure $TiO_2$. $TiO_2$-coated phosphorescent materials showed a much faster photocatalytic decomposition of benzene gas under visible irradiation compared to the pure $TiO_2$ for which the result was practically negligible. This suggests that the extension of the absorption wavelength to visible light occurred through energy band bending by a heterojunction at the interface of the $Sr_4Al_{14}O_{25}-TiO_2$ composite. Also, the $Sr_4Al_{14}O_{25}-TiO_2$ composite showed the photocatalytic decomposition of benzene in darkness due to the photon light emitted from the $Sr_4Al_{14}O_{25}$ phosphors.

세라믹 가스센서를 이용한 토양증기추출공정의 배출가스 모니터링 기법 연구

  • 양지원;조현정;이재영;곽무영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.250-252
    • /
    • 2002
  • The goals of environmental monitoring are to locate and quantify the significant contamination, estimate the fate and transport, estimate the potential exposure and risks to humans and the environment, and track the performance of various remedial technologies. In this study, ceramic gas sensor system is proposed to enhance the effectiveness of soil vapor extraction (SVE) process by monitoring the effluent gas. SVE is a technique that is widely used to remediate unsaturated soils contaminated with volatile organic contaminants. The sensor response for benzene, toluene, and xylene, the representative effluent gas compositions of SVE process, was evaluated using the proposed sensor system. As a result, it was verified that the response of sensor was increased or decreased very sensitively according to the change of the effluent gas concentration. Besides, the sensor could detect the difference over a wide range of concentration and it was more sensitive in order of xylene, toluene, and benzene. It is expected that this VOC analysis method results in field monitoring costs saying and appropriate immediate action for process control. More detailed experiments are being conducted in our research group.

  • PDF

NMF를 포함하는 이성분계의 등온 기-액 평형과 삼성분계 액-액 평형 (Binary Vapor-Liquid Equilibria and Ternary Liquid-Liquid Equilibria for NMF Contained Systems)

  • 박소진;한규진;원동복;오종혁;최영윤
    • Korean Chemical Engineering Research
    • /
    • 제43권2호
    • /
    • pp.259-265
    • /
    • 2005
  • Water+n-methylformamide(NMF), benzene+NMF 그리고 toluene+NMF의 353.15 K 이성분계 등온 기-액상평형을 headspace gas chromatography(HSGC)로 측정하였고, NMF+benzene+n-heptane과 NMF+toluene+n-heptane 삼성분계에 대한 298.15 K 액-액상평형을 tie-line 측정법으로 결정하였다. 이성분계 기-액상평형 데이터는 공비점이 없었으며, $g^E$ 모델식(Margules, van Laar, Wilson, NRTL, UNIQUAC)에 비교적 작은 편차로 잘 상관되었다. 삼성분계 tie-line 데이터는 NRTL식과 UNIQUAC식을 이용하여 상관과 추산을 병행하였으며, Hirata-Fujita식과 Maior-Swenson식을 이용하여 정확도를 검증하였다.

VPB를 이용한 효율적인 Gas 상태의 BTEX 제거에 관한 연구 (Effective Removal of Gaseous BTEX Using VPB During Treatment of Briny Produced Water)

  • 권순동
    • 한국물환경학회지
    • /
    • 제27권2호
    • /
    • pp.167-177
    • /
    • 2011
  • Oil이나 Gas생산시 발생하는 Produced water의 양은 미국 내에서만 연간 수십억 배럴에 육박한다. 이러한 Produced water의 재이용을 위한 첫 번째 과제는 유해 유기물질을 제거하는 것으로, 본 연구에서는 수중의 BTEX를 가스상태로 변화시킨 후 Vapor phase biofilter (VPB)로 분해, 제거 효능을 평가하였다. VPB 시스템은 짧은 기간의 시스템 shutdown에는 거의 영향을 받지 않는 것으로 나타났다. 그러나 주입 되는 농도가 Peak 형태를 가질때는 제거효능의 저하가 관찰 되었으며, 이중 Benzene이 가장 민감하게 반응하였다. 이를 위한 해결책으로 GAC로 충진된 Buffering Column이 사용되었으며, 이는 peak 형태의 유입농도 Profile을 완만한 형태로 buffering하는 역할을 하였다. 현장 적용을 통하여, 본 시스템이 Produced water내에 존재하는 용존 BTEX를 효과적으 로 제거할 수 있음을 확인하였다.

Propyl vinyl ether+Ethanol+Benzene 혼합계의 333.15 K에서의 등온 기액평형과 303.15 K에서의 과잉물성 및 굴절율편차 (Isothermal Vapor-Liquid Equilibria at 333.15 K and Excess Molar Volumes and Refractive Indices at 303.15 K for the Mixtures of Propyl vinyl ether + Ethanol + Benzene)

  • 황인찬;박소진
    • Korean Chemical Engineering Research
    • /
    • 제49권1호
    • /
    • pp.56-61
    • /
    • 2011
  • Methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, butyl vinyl ether 그리고 isobutyl vinyl ether 등의 alkyl vinyl ether는 화학 및 의약산업에서 용매와 합성중간체로 널리 사용된다. 최근 들어 alkyl vinyl ether는 고분자 전해질막 연료 전지에 대한 원료와 셀룰로오스의 염색가공에 선호되나, 공정 및 운전변수의 최적화를 위한 alkyl vinyl ether계의 혼합물성은 극히 일부가 보고되고 있고, propyl vinyl ether(PVE)에 대한 상평형과 물성 데이터는 거의 알려진 바가 없다. 따라서 본 연구는 {PVE + ethanol + benzene} 삼성분계 333.15 K에서 기액평형을 headspace gas chromatography (HSGC)을 이용하여 측정하였고 Wilson, NRTL 및 UNIQUAC 식에 상관시켰다. 또한 삼성분계를 구성하는 혼합물성으로써 {PVE + ethanol}, {ethanol + benzene} 그리고 {PVE + benzene}계에 대한 과잉부피($V^E$) 및 굴절율 편차(${\Delta}R$)를 303.15 K에서 측정하였다. 측정된 이성분계 혼합물성은 Redlich-Kister 다항식을 이용하여 매개변수를 상관시켰으며, 이를 이용하여 Radojkovi 식으로 삼성분계 혼합물성을 예측하였다.