• Title/Summary/Keyword: bentonite recycling

Search Result 14, Processing Time 0.018 seconds

Evaluation of Field Applicability with Coal Mine Drainage Sludge (CMDS) as a Liner: Part I: Physico-Chemical Characteristics of CMDS and a Mixed Liner (차수재로의 광산슬러지 재활용 적용성 평가: Part I: 광산배수슬러지 및 혼합차수재의 물리·화학적 성질)

  • Lee, Jai-Young;Bae, Sun-Young;Woo, Seung-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • CMDS (Coal Mine Drainage Sludge) is mainly generated from acid mine drainage during physicochemical treatment or electrical purification. CMDS is well worth considering on recycling possibilities in various areas. This research applies the liner and cover materials using waste disposal landfill generally to treat acid mine drainage sludge. In this Part I of the two parts paper, physico-chemical characteristics of CMDS, bentonite and cement to prepare the liner have been identified using XRD, XRF, FESEM. In addition, combining their physicochemical characteristics, the optimum mixing ratio has been determined to be 1: 0.5: 0.3 for CMDS: bentonite: cement by the batch tests. Initial permeability of CMDS was $7.10{\times}10^{-7}cm/s$. Through the leaching test, it was confirmed that its mixture was environmentally safe. In the Part 2, a large-scale Lysimeter was used to simulate the effects of the layer on the freeze/thaw for evaluation on field applicability and stability.

A Study on the Preparation of Lightweight Materials with Sewage Sludge Ash (하수(下水)슬러지 소각재(燒却滓)를 사용한 경량재료(輕量材料) 제조연구(製造硏究))

  • Lee, Hwa-Young
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.30-36
    • /
    • 2008
  • The preparation of porous lightweight materials as well as the measurement of physical properties has been performed by using SSA(sewage sludge ash) as the raw material. For this aim, two types of lightweight filler, that is, perlite and silica sphere were employed respectively and bentonite was also used as an inorganic binder. The properties of lightweight specimen calcined at 1,000 were measured in terms of density, compressive strength, thermal conductivity and sound absorption to examine the effect of material composition as well as the preparation condition on the properties of lightweight material. As a result, the density of specimen prepared with perlite was ranged from 1.23 to $1.37g/cm^3$ and the compressive strength was ranged from 242.3 to $370.5kg/cm^2$. In case of specimen prepared with silica sphere, it was found that the compressive strength was less than $100kg/cm^2$ even though density was lower than that of specimen with perlite. As far as the thermal conductivity of specimen was concerned, it was ranged from 0.3 to $0.5W/m^{\circ}K$ depending on material composition so that the insulation effect was superior to conventional concrete.

Immobilization and Recycling of Arsenic-Contaminated Fine Soil Cake Produced after Soil Washing Process (토양세척 후 발생하는 비소오염 탈수미세토의 불용화 및 재활용 평가)

  • Oh, Minah;Moon, SoYoung;Hyun, Min;Chae, HeeHoon;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.9-16
    • /
    • 2012
  • Standardized remediation process for the soil contaminated with arsenic is insufficient due to characteristics of its anion-mobility and speciation changed by Eh-pH of soil. One of the well-known efficient remediation processes is the modified soil washing that particle separation process by only water. However, it is required that the treatment plan for the fine soil what was discharged after modified soil washing. Therefore, this research suggests the treatment plan that the recycling method using arsenic immobilization by FeS-$H_2O_2$. The batch experiments results for the arsenic immobilization showed that the water content was at least 50%, the injection of FeS and $H_2O_2$ (assay-35%) were 8% (w/watdrybase) and 0.2 mL/10 g of fine soil respectively. Arsenic concentration with KSLT was decreased about 95.4%. The results indicated that the mixing of FeS-$H_2O_2$ was highly efficient on the immobilization of As-contaminated soil. The mixing ratio as 13% of bentonite with 3% of cement (at based on 100% of immobilized fine soil) was satisfied with standard of liner for landfill construction.

Case study on slurry performance according to the recycling of slurry TBM filtrate water with coagulant (이수식 TBM의 응집제 사용수 재활용에 따른 슬러리 성능 연구)

  • Han-Byul Kang;Jae-Won Lee;Ju-Hyi Yim;Byung-Cheol Ahn;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.449-461
    • /
    • 2024
  • The use of tunnel boring machine (TBM), a mechanized excavation method with low noise and vibration and high safety compared to NATM method, has increased globally. In particular, slurry shield TBMs are used in subsea and submarine sections because they have an advantage in high pressure compared to EPB (earth pressure balanced) methods. As such, the used water of slurry shield TBMs is discharged through wastewater treatment facilities. In the case of large-scale TBMs, the amount of water used is enormous, so it should be recycled to reduce costs and protect the environment. Various types of additives are used to improve the performance of the slurry treatment plant (STP) and filter press. Among them, coagulants improve the productivity of the filter press by neutralizing the charges on particles. In this study, lab tests were conducted to evaluate the reusability of the used water through the filter press after flocculants were added.