• Title/Summary/Keyword: bending strength(MOR)

Search Result 91, Processing Time 0.022 seconds

Effect of Zephyr Producing Method on Properties of Bamboo Zephyr Boards (대나무 Zephyr의 제조 조건에 따른 보드의 물성비교)

  • Kim, Yu-Jung;Roh, Jeang-Kwan;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.24-30
    • /
    • 2003
  • In order to develop structural 'bamboo zephyr board', properties of boards produced by various methods making zephyr were estimated. All of boards were tested with KS(Korean Standards) F 3014 Particle board, and results were summarized as follow. The zephyr boards produced by final 1.5 mm roller space had the best properties(MOR, MOE and IB strength) among boards produced by different final roller space. Also, they had the best properties(MOR and MOE) in bending test after 1 hour soaking treatment after 2 hour-boiling in water, which were similar to properties of boards in dry-condition. Thickness swelling(TS) of all boards was less than 12% required to the Korean Standards A 3014. Zephyr boards produced by final 1.5 mm roller space also had the lowest values among all of boards. Boards produced by non-treatment (in green condition) had the better strength than those of boards produced by different pre-treatment methods(boiling in water and in 0.3% NaOH) in bending test.

Bending Properties of the Composite Panel Composed of Particleboard and Apitong (Dipterocarpus grandiflorus) Veneer (파티클보드와 아피통단판을 구성 접착한 복합판넬의 휨성질)

  • Lee, Phil-Woo;Yoon, Hyoung-Un;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.53-61
    • /
    • 1991
  • Mechanical properties of composite panel made with 3mm thick Apitong(Dipterocarpus grandiflorus) veneer on each face of particleboard core of 4 different specific gravity were determined. The results obtained were as follows: 1. Measured MOR and MOE increased with an increased in specific gravity of particleboard core. 2. Test results showed that the difference in bending properties between flatwise bending and edgewise bending was present. The average MOE value of flatwise loading was higer than that of epdgewise loading. But it was shown reverse tendency in MoR and MOE. 3. The delamination between face veneer and core particle was found in flatwise bending but nell in edgewise. 4. These composite panel could be substituted for plywood and other panel materials in furniture making as considered suitable allowable stress and bending strength.

  • PDF

The Effect of Resin Impregnation Ratio on the Properties of Woodceramics Made from Broussonetia Kazinoki Sieb (수지함침율이 닥나무 우드세라믹의 성질에 미치는 영향)

  • Byeon, Hee-Seop;Kim, Jae-Min;Hwang, Kyo-Ki;Park, Seong-Cheol;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.178-184
    • /
    • 2010
  • This study was carried out to investigate the properties of woodceramics made from woody part of Broussonetia Kazinoki at different impregnation ratios of phenolic resin of 40, 50, 60, 70%. The physical and mechanical properties increased with increasing impregnation ratio. The highest mean values of density, bending strength, Brinell hardness and compressive strength were 0.66 g/$cm^3$, 53 kgf/$cm^2$, 187 kgf/$cm^2$, 126 kgf/$cm^2$, respectively. There were close correlations between density and bending strength, Brinell hardness and compressive strength, and between MOE and MOR.

Sound Absorption Capability and Bending Strength of Miscanthus Particle Based Board (억새 파티클보드의 흡음성능과 휨강도성능)

  • Kang, Chun-Won;Park, Hee-Jun;Jeon, Soon-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • Sound absorption capability and mechanical properties such as MOE and MOR in bending of miscanthus particle based board were estimated by the two microphone transfer function method and three point bending method, respectively. The results are summarized as follows: The sound absorption coefficients of miscanthus particle based board was higher than those of commercial gypsum board which is well used as sound absorbing barrier. The MOR and MOE of miscanthus particle based board increased with increasing of board density. The sound absorption coefficients of miscanthus particle based board were 50~80% in the frequency range of about 1~2.5 Khz. In entire frequency range, those value increased with target board density decreasing.

Static Bending Strength Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨강도성능)

  • Park, Han-Min;Moon, Sung-Jae;Choi, Yoon-Eun;Park, Jung-Hwan;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.546-555
    • /
    • 2009
  • To study an effective use of woods, three-ply hybrid laminated woods instead of crosslaminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements for the core laminae on bending strength performances was investigated. Bending modulus of elasticity (MOE) of hybrid laminated woods had the highest values for the hybrid laminated wood types arranging OSB laminae in the core, and had the lowest values for those arranging MDF laminae in the core. These values were higher than those of various cross-laminated woods. The estimated bending MOEs of the hybrid laminated woods which were composed of perpendicular-direction lamina of spruce in the faces were similar to their measured values, regardless of wood-based boards in the core. However, those of the hybrid laminated woods which were composed of parallel-direction lamina of spruce in the faces had much higher values than those of their measured values, and it was necessary to revise the measured values. Bending modulus of rupture (MOR) of the hybird laminated woods had the highest value for those arranging OSB laminae in the core, and had the lowest values for those arranging PB laminae in the core unlike the bending MOE. By hybrid laminating, the anisotropy of bending strength performances was markedly decreased, and the differences of strength performances among wood-based boards were also considerably decreased.

Nondestructive Bending Strength Evaluation of Miscanthus sinensis var. purpurascens Ceramics Made from Different Carbonizing Temperatures (탄화온도별로 제조된 거대억새 세라믹의 비파괴 휨강도 평가)

  • Won, Kyung-Rok;Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.723-731
    • /
    • 2014
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for ceramics made by different carbonizing temperatures (600, 800, 1000, $1200^{\circ}C$) after impregnating the phenol resin with Miscanthus sinensis var. purpurascen particle boards. Dynamic modulus of elasticity increased with increasing carbonizing temperature. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient was higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made by different carbonizing temperature for Miscanthus sinensis var. purpurascens particle boards.

The Bending Strength and Adhesive Properties of PRF and MUF Glulam (PRF, MUF 집성재의 휨 강도와 접착 성능 평가)

  • Park Jun-Chul;Kim Keon-Ho;Hong Soon-Il
    • Journal of the Korea Furniture Society
    • /
    • v.15 no.2
    • /
    • pp.19-27
    • /
    • 2004
  • As glulam is a woody material, it is necessary to be more careful in a gluing process. It takes 6-7 hours at $40-60^{\circ}C$ to harden PRF resin used in making structural glulam, and about 24 hours at room temperature. In the present process which can not use a press continuously, reducing the hardening time is necessary to increase production. The experiment was done to compare the adhesive properties of PRF resin and MUF resin through bending test, block shear strength test and water soaking test. In comparing the bending strength of prediction MOE is 1.2 times higher that actual MOE. PRF and MUF do not show significant difference in MOE and MOR, and in block shear strength test, such as shear strength and wood failure rate. However, in water soaking and boiling water soaking tests PRF and MUF show the significant difference in delamination rate.

  • PDF

Static Bending Performances of Cross-Laminated Wood Panels Made with Tropical and Temperate Woods

  • Byeon, Jin-Woong;Kim, Tae-Ho;Yang, Jae-Kyung;Byeon, Hee-Seop;Park, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.726-734
    • /
    • 2018
  • In this study, for using effectively domestic (temperate) small and medium diameter logs as a wooden floorboard, cross-laminated wood panels were manufactured using domestic larch and tulip woods as a base material for teak and merbau wood flooring, and static bending strength performances were measured to investigate the applicability as the base materials of wooden flooring in place of plywood. Static bending MOE was much influenced by the strength performances of the top layer lamina than that of the laminae for base materials. Bending MOR showed the higher values in tulip wood that was hardwoods than in larch wood that was softwoods regardless of the strength performances of the top layer laminae, and it was found that the values were much influenced by the strength performances of the base materials used in the core and bottom layers. However these values were 1.4-2.5 times higher values than the bending strength of the wooden floorboards specified in KS, it was found that it can be sufficiently applied to the base materials of wooden floorboards in place of plywood.

Effect of Green Tea Content on Static Bending Strength Performance of Hybrid Boards Composed of Green Tea and Wood Fibers (녹차-목재섬유복합보드의 정적 휨 강도성능에 미치는 녹차배합비율의 영향)

  • Park, Han-Min;Kang, Dong-Hyun;Lim, Na-Rea;Lee, Soo-Kyeong;Jung, Kang-Won;Kim, Jong-Chul;Cho, Kyeong-Hwan
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.1-8
    • /
    • 2010
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea and wood fibers for application as interior materials with various functionalities of green tea and strong strength properties of wood fibers. In this relation, the effect of green tea content on the static bending strength performances of these green tea and wood fibers composite boards were investigated. Static bending strengths of hybrid composite boards were lower than those of control boards and decreased with the increase of green tea content. Also, the strength performances appeared to be somewhat different by resin type used for board manufacture. The hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, which has higher molar ratio of formaldehyde to urea than that of $E_0$ grade one, were 1.08~1.53 times higher in bending modulus of elasticity (MOE) and 1.19~1.82 higher in modulus of rupture (MOR) than that manufactured from $E_0$ grade. And, the differences of MOE and MOR between hybrid composite boards manufactured from $E_0$ grade and $E_0$ grade urea resin adhesive increased with the increase of green tea content. In the case of hybrid composite boards manufactured from $E_1$ grade urea resin adhesive, the MOR was within 0.94~1.03 times the commercial medium density fiberboard. Thus, it was thought that eco-friendly hybrid composite boards with various functionalities and strong strength performances could be manufactured from green tea and wood fibers.

The Bending Strength Properties and Acoustic Emissions to Sloped Finger-Jointed Pinus densiflora S. et Z. (소나무 경사핑거접합재의 휨강도성능과 AE 특성)

  • Byeon, Hee-Seop;Ahn, Sam-Keun;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.30-36
    • /
    • 1999
  • This paper describes the relationship between the bending strength properties of sloped finger-jointed woods and the acoustic emissions (AEs) generated during the test. Pinus densiflora pieces were cut in sloped-finger types and glued with four kinds of adhesives (polyvinyl acetate, polyvinyl-aeryl, oilic urethane and resorcinol-phenol resin). The results were as follows: The lower the bending strength(load) was, the earlier the generation time of AE event count got and the higher the increasing rate of AE event count became in the sloped finger-jointed specimens bonded with polyvinyl acetate and oilic urethane resin adhesives. Therefore, the slope from load-AE cumulative event count curve was very steep. The AE event count for resorcinol-phenol resin adhesive obtained even from low load level was abundant. The AE event count continuously increased as load increased and the event count was much more than one in the other conditions. The slope from load-AE cumulative event count curve was very gentle compared with other conditions. The patterns of AE event count and count were very similar. The relationship between the MOR and the AE parameter from load and AE cumulative event count in the early stage of the sloped finger-jointed specimens bonded with polyvinyl acetate, oilic urethane and resorcinol-phenol resin adhesives was much greater than that between the MOE and the MOR. Therefore, the AE signals obtained during bending test are useful for estimating the strength of sloped finger-jointed specimens.

  • PDF