• Title/Summary/Keyword: bending shear

Search Result 1,461, Processing Time 0.023 seconds

A new and simple analytical approach to determining the natural frequencies of framed tube structures

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.111-120
    • /
    • 2018
  • This paper presents a new and simple solution for determining the natural frequencies of framed tube combined with shear-walls and tube-in-tube systems. The novelty of the presented approach is based on the bending moment function approximation instead of the mode shape function approximation. This novelty makes the presented solution very simpler and very shorter in the mathematical calculations process. The shear stiffness, flexural stiffness and mass per unit length of the structure are variable along the height. The effect of the structure weight on its natural frequencies is considered using a variable axial force. The effects of shear lag phenomena has been investigated on the natural frequencies of the structure. The whole structure is modeled by an equivalent non-prismatic shear-flexural cantilever beam under variable axial forces. The governing differential equation of motion is converted into a system of linear algebraic equations and the natural frequencies are calculated by determining a non-trivial solution for the system of equations. The accuracy of the proposed method is verified through several numerical examples and the results are compared with the literature.

Seismic response simulations of bridges considering shear-flexural interaction of columns

  • Zhang, Jian;Xu, Shi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.545-566
    • /
    • 2009
  • Bridge columns are subjected to combined actions of axial force, shear force and bending moment during earthquakes, caused by spatially-complex earthquake motions, features of structural configurations and the interaction between input and response characteristics. Combined actions can have significant effects on the force and deformation capacity of RC columns, resulting in unexpected large deformations and extensive damage that in turn influences the performance of bridges as vital components of transportation systems. This paper evaluates the seismic response of three prototype reinforced concrete bridges using comprehensive numerical models that are capable of simulating the complex soil-structural interaction effects and nonlinear behavior of columns. An analytical approach that can capture the shear-flexural interacting behavior is developed to model the realistic nonlinear behavior of RC columns, including the pinching behavior, strength deterioration and stiffness softening due to combined actions of shear force, axial force and bending moment. Seismic response analyses were conducted on the prototype bridges under suites of ground motions. Response quantities of bridges (e.g., drift, acceleration, section force and section moment etc.) are compared and evaluated to identify the effects of vertical motion, structural characteristics and the shear-flexural interaction on seismic demand of bridges.

Shear Behavior Prediction of Reinforced Concrete Columns Using Transformation Angle Truss Model (변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단거동 예측)

  • Kim Sang-Woo;Chai Hyee-Dae;Lee Jung-Yoon;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.435-444
    • /
    • 2005
  • This paper predicted the shear behavior of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered the effects of bending moment and axial force. Nine columns with various shear span- to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Fine linear displacement transducers (LVDT) were attached to a side of the column near the shear critical region to measure the curvature, the longitudinal and transverse axial deformations, and the shear deformation of the column. The test was terminated when the value of the applied load dropped to about $85\%$ of the maximum-recorded load in the post-peak descending branch. All the columns were failed in shear before yielding of the flexural steel. The shear strength and the stiffness of the columns increased, as the axial force increased and the shear span-to-depth ratio decreased. Shear stress-shear strain and shear stress-strain of shear reinforcement curves obtained from TATM were agreed well with the test results in comparison to other truss models (MCFT, RA-STM, and FA-STM).

Structural Design and Evaluation of Six-component Wheel Dynamometer (6축 휠 동력계의 구조설계 및 평가)

  • Kim, Man Gee;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.53-63
    • /
    • 2016
  • Wheel dynamometers are used to measure dynamic load that is conveyed from the road to a vehicle while driving. In this paper, two types of six-component wheel dynamometers utilizing shear deformation and bending deformation were designed and evaluated. Prior to designing the shear and bending type wheel dynamometers, the shear and bending deformation behaviors of the basic structure of the wheel dynamometer itself were analyzed using finite element analysis. Strain analysis was performed repeatedly in order to obtain a similar output sensing strain for each load component. The design was modified with a bridge circuit in order to minimize coupling strain. The results indicated that the shear type dynamometer was expected to obtain stable characteristics due to uniform strain distribution while the bending type dynamometer was expected to obtain high-quality sensitivity performance due to consistent output sensitivity.

Bending analysis of functionally graded thick plates with in-plane stiffness variation

  • Mazari, Ali;Attia, Amina;Sekkal, Mohamed;Kaci, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.409-421
    • /
    • 2018
  • In the present paper, functionally graded (FG) materials are presented to investigate the bending analysis of simply supported plates. It is assumed that the material properties of the plate vary through their length according to the power-law form. The displacement field of the present model is selected based on quasi-3D hyperbolic shear deformation theory. By splitting the deflection into bending, shear and stretching parts, the number of unknowns and equations of motion of the present formulation is reduced and hence makes them simple to use. Governing equations are derived from the principle of virtual displacements. Numerical results for deflections and stresses of powerly graded plates under simply supported boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those available in the literature. As conclusion, this theory is as accurate as other shear deformation theories and so it becomes more attractive due to smaller number of unknowns. Some numerical results are provided to examine the effects of the material gradation, shear deformation on the static behavior of FG plates with variation of material stiffness through their length.

A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation

  • Benahmed, Abdelkarim;Houari, Mohammed Sid Ahmed;Benyoucef, Samir;Belakhdar, Khalil;Tounsi, Abdelouahed
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.9-34
    • /
    • 2017
  • In this work, an efficient and simple quasi-3D hyperbolic shear deformation theory is developed for bending and vibration analyses of functionally graded (FG) plates resting on two-parameter elastic foundation. The significant feature of this theory is that, in addition to including the thickness stretching effect, it deals with only 5 unknowns as the first order shear deformation theory (FSDT). The foundation is described by the Pasternak (two-parameter) model. The material properties of the plate are assumed to vary continuously in the thickness direction by a simple power law distribution in terms of the volume fractions of the constituents. Equations of motion for thick FG plates are obtained within the Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The numerical results are given in detail and compared with the existing works such as 3-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates resting on elastic foundation.

Mechanical behavior of steel-concrete composite decks with perfobond shear connectors

  • Allahyari, Hamed;Dehestani, Mehdi;Beygi, Morteza H.A.;Neya, Bahram Navayi;Rahmani, Ebrahim
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.339-358
    • /
    • 2014
  • Exodermic deck systems are new composite steel grid deck systems which have been used in various projects during the past decade. One of the eminent features of this system is considerable reduction in the structure weight compared to the ordinary reinforced concrete decks and also reduction in construction time by using precast Exodermic decks. In this study, dynamic properties of the Exodermic deck bridges with alternative perfobond shear connectors are investigated experimentally. In order to evaluate the dynamic properties of the decks, peak picking and Nyquist circle fit methods are employed. Frequencies obtained experimentally are in good agreement with the results of the finite-element solution, and the experimental results show that the first mode is the most effective mode among the obtained modes. The first four modes are the rigid translational motion modes, and the next two modes seem to be rigid rotational motion modes around a horizontal axis. From the 7th mode onwards, modes are flexible. The range of damping ratios is about 0.5%. Furthermore, the static behavior of the Exodermic decks under a static load applied at the center of the decks was investigated. Failure of the decks under positive bending was punching-shear. The bending strength of the decks under negative bending was about 50 percent of their strength under positive bending. In addition, the weight of an Exodermic deck is about 40% of that of an equivalent reinforced concrete slab.

The Mechanical Properties and Hand of Cotton Fabrics with the Variation of Weft Density (면직물의 위사밀도 변화에 따른 역학특성 및 태)

  • Bae Jin-Hwa;Park Jung-Whan;An Seung-Kook
    • Science of Emotion and Sensibility
    • /
    • v.8 no.4
    • /
    • pp.345-354
    • /
    • 2005
  • In this study, the mechanical properties and hand characteristics have been analyze4 according to fabric structural parameters such as the weft density and weave stricture of cotton fabric. KES-FB system was used to measure hand characteristics and mechanical properties of fabric. The weft density made an effect on bending and shear properties but not on tensile , compression, and surface properties. In case of wearing property, B/w, 2HG/G, 2HB/B, 2HB/W, $\sqrt[3]{B/W}$, $\sqrt{2HB/W}$, W/T, WC/W were affected tv the weft density. The crimp was highly correlated with the tightness, hand, wearing an4 mechanical properties, specially tensile linearity, bending, shear, and compression properties. The weft crimp influenced the bending, shear, compression resilience, surface roughness, hand, and wearing properties. The tightness has an effect on tile bending, shear, compression, surface friction, hand, and wearing properties.

  • PDF

Design and Analysis of Section-divided Circular Composite Wing Spar (단면분할 원통형 복합재료 날개 보 설계 및 해석)

  • Kim, Ki-Hoon;Koo, Kyo-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.687-694
    • /
    • 2019
  • A circular composite spar in the wing of ultra-light aircraft is subjected to both bending moment and transverse shear loads. However, the beam being used in the aircraft may be inefficient because the design would not take into account the characteristics of the circular tube that supports the bending moment in top and bottom arc parts and the transverse load in left and right ones. Therefore, it is necessary to efficiently fabricate the circular tube beam by properly selecting the stacking sequences or the laminated composite structure. In order to increase both bending and transverse shear strengths of the beams, in this study, a cross-section of circular tube is divided into four arcs: top, bottom, left and right ones. The commercial program, MSC/NASTRAN is used to calculate vertical displacement and the normal and shear strains with variation of parameters such as division angle of arc and fiber orientation. Based on the results, the effective parameters for the new circular composite beam are presented to increase its bending and shear strengths.

Influence of moisture content on main mechanical properties of expansive soil and deformation of non-equal-length double-row piles: A case study

  • Wei, Meng;Liao, Fengfan;Zhou, Kerui;Yan, Shichun;Liu, Jianguo;Wang, Peng
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • The mechanical properties of expansive soil are very unstable, highly sensitive to water, and thus easy to cause major engineering accidents. In this paper, the expansive soil foundation pit project of the East Huada Square in the eastern suburb of Chengdu was studied, the moisture content of the expansive soil was considered as an important factor that affecting the mechanics properties of expansive soil and the stability of the non-equal-length double-row piles in the foundation pit support. Three groups of direct shear tests were carried out and the quantitative relationships between the moisture content and shear strength τ, cohesion c, internal friction angle φ were obtained. The effect of cohesion and internal friction angle on the maximum displacement and the maximum bending moment of piles were analyzed by the finite element software MIDAS/GTS (Geotechnical and Tunnel Analysis System). Results show that the higher the moisture content, the smaller the matrix suction, and the smaller the shear strength; the cohesion and the internal friction angle are exponentially related to the moisture content, and both are negatively correlated. The maximum displacement and the maximum bending moment of the non-equal length double-row piles decrease with the increase of the cohesion and the internal friction angle. When the cohesion is greater than 33 kPa or the internal friction angle is greater than 25.5°, the maximum displacement and maximum bending moment of the piles are relatively small, however, once crossing the points (the corresponding moisture content value is 24.4%), the maximum displacement and the maximum bending moment will increase significantly. Therefore, in order to ensure the stability and safety of the foundation pit support structure of the East Huada Square, the moisture content of the expansive soil should not exceed 24.4%.