• Title/Summary/Keyword: bending response

Search Result 602, Processing Time 0.027 seconds

Numerical investigations of structure-soil-structure interaction on footing forces due to adjacent building

  • Shrish Chandrawanshi;Vivek Garg
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.477-487
    • /
    • 2024
  • The interaction between multiple structures through the supporting soil media, known as structure-soil-structure interaction (SSSI), has become an increasingly important issue due to rapid urbanization. There is a need to investigate the effect of SSSI on the structural response of buildings compared to non-interaction analysis (NIA) and soil-structure interaction (SSI) analysis. In the present study, two identical 4-bay×4-bay, three-story RCC buildings are modeled adjacent to each other with a soil domain beneath it to investigate the effect of SSSI on the forces experienced by footings under gravity and seismic load cases. The ANSYS software is used for modeling various non-interaction and interaction models which work on the principle of FEM. The results indicate that in most of the footings, the SSSI effect causes a significant redistribution of forces compared to SSI and NIA under both gravity and seismic load cases. The maximum interaction effect is observed on the footings that are closer to the adjacent building. The axial force, shear force and bending moment values on these footings show that SSI causes a significant increase in these values compared to non-interaction analysis but the presence of adjacent building relieves these forces significantly.

Seismic performance enhancement of a PCI-girder bridge pier with shear panel damper plus gap: Numerical simulation

  • Andika M. Emilidardi;Ali Awaludin;Andreas Triwiyono;Angga F. Setiawan;Iman Satyarno;Alvin K. Santoso
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.69-82
    • /
    • 2024
  • In the conventional seismic design approach for a bridge pier, the function of the stopper, and shear key are to serve as mechanisms for unseating prevention devices that retain and transmit the lateral load to the pier under strong earthquakes. This frequently inflicts immense shear forces and bending moments concentrated at the plastic hinge zone. In this study, a shear panel damper plus gap (SPDG) is proposed as a low-cost alternative with high energy dissipation capacity to improve the seismic performance of the pier. Therefore, this study aimed to investigate the seismic performance of the pre-stressed concrete I girder (PCI-girder) bridge equipped with SPDG. The bridge structure was analyzed using nonlinear time history analysis with seven-scaled ground motion records using the guidelines of ASCE 7-10 standard. Consequently, the implementation of SPDG technology on the bridge system yielded a notable decrease in maximum displacement by 41.49% and a reduction in earthquake input energy by 51.05% in comparison to the traditional system. This indicates that the presence of SPDG was able to enhance the seismic performance of the existing conventional bridge structure, enabling an improvement from a collapse prevention (CP) level to an immediate occupancy (IO).

Mechanical behaviour of advanced composite beams via a simple quasi-3D integral higher-order beam theory

  • Khaled Bouakkaz;Ibrahim Klouche Djedid;Kada Draiche;Abdelouahed Tounsi;Muzamal Hussain
    • Advances in materials Research
    • /
    • v.13 no.5
    • /
    • pp.335-353
    • /
    • 2024
  • In the present paper, a simple quasi-3D integral higher-order beam theory (HBT) is presented, in which both shear deformation and thickness stretching effects are included for mechanical analysis of advanced composite beams with simply supported boundary conditions, handling mainly bending, buckling, and free vibration problems. The kinematics is based on a novel displacement field which includes the undetermined integral terms and the parabolic function is used in terms of thickness coordinate to represent the effect of transverse shear deformation. The governing equilibrium equations are drawn from the dynamic version of the principle of virtual work; whereas the solution of the problem is obtained by assuming a Navier technique for simply supported advanced composite beams subjected to sinusoidally and uniformly distributed loads. The correctness of the present computational method is checked by comparing the obtained numerical results with quasi-3D solutions found in the literature and with those provided by other shear deformation beam theories. It can be confirmed that the proposed model, which does not involve any shear correction factor, is not only accurate but also simple and useful in solving the static and dynamic response of advanced composite beams.

Enhancement of Stem Firmness in Standard Chrysanthemum 'Baekma' by Foliar Spray of Liquid Calcium Compounds (액상 칼슘 화합물 엽면살포에 의한 스탠다드 국화 '백마'의 줄기 경도 강화)

  • Lee, Chang-Hee;Nam, Mi-Kyong
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.298-305
    • /
    • 2011
  • This study was conducted to enhance the stem firmness of standard chrysanthemum 'Baekma' bred in Korea for commercial quality improvement and inhibition of stem breaking during transportation through foliar spray with calcium agents. Calcium agent screening 'Baekma' was examined using $CaCl_2{\cdot}2H_2O$, $Ca(NO_3)_2{\cdot}4H_2O$, and OS-Ca (natural liquid calcium compounds extracted from oyster shell) depending on each concentration (0, 0.001, 0.01, 0.1, and 1.0%, respectively). All calcium agents sprayed with 1.0% caused chemical injury such as stem bending or leaf burn. OS-Ca also showed more sensitive response to chemical injury than the other calcium agents because OS-Ca was absorbed very well by 'Baekma' leaves. Maximum stem firmness measured during the final harvest was greater in OS-Ca than in the other calcium agents. Especially, maximum stem firmness was greatest in 0.01% OS-Ca. However, elastic strength and maximum bending stress were greater in 0.001% OS-Ca than in the others. Thus, OS-Ca ranged from 0.005 to 0.05%, which did not show any chemical injury, was finally selected as the first candidate for hardening the stem of 'Baekma'. The next experiment using OS-Ca was conducted with the concentrations of 0, 0.005, 0.01, and 0.05%, respectively. From the results, 0.05% OS-Ca showed better plant growth and parameters such as plant height, stem diameter (upper and middle part), the number of leaves, and dry weights of each part than the other concentrations of OS-Ca and control. As for stem firmness depending on OS-Ca concentration, the Ca content within stem, maximum firmness, elastic strength, and maximum bending stress of stem in 'Baekma' sprayed with 0.05% OS-Ca showed the highest values among all the treatments and it turned out to be very high level of significance between control and OS-Ca treatments. However, the area and percentage of the inside cavity within horizontal stem section in 'Baekma' did not show any significance between any treatments including control. Thus, stem firmness of 'Baekma' did not show any correlation with the inside cavity area of stem. In conclusion, we recommend foliar sprays with 0.05% OS-Ca at vegetative growth stage to enhance stem firmness of 'Baekma' during transportation.

Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.559-575
    • /
    • 2016
  • In order to investigate the influence of different blade positions on aerodynamic load and wind loads and load-effects of large scale wind turbine tower under the halt state, we take a certain 3 MW large scale horizontal axis three-blade wind turbine as the example for analysis. First of all, numerical simulation was conducted for wind turbine flow field and aerodynamic characteristics under different halt states (8 calculating conditions in total) based on LES (large eddy simulation) method. The influence of different halt states on the average and fluctuating wind pressure coefficients of turbine tower surface, total lift force and resistance coefficient, circular flow and wake flow characteristics was compared and analysed. Then on this basis, the time-domain analysis of wind loads and load-effects was performed for the wind turbine tower structure under different halt states by making use of the finite element method. The main conclusions of this paper are as follows: The halt positions of wind blade could have a big impact on tower circular flow and aerodynamic distribution, in which Condition 5 is the most unfavourable while Condition 1 is the most beneficial condition. The wind loads and load-effects of disturbed region of tower is obviously affected by different halt positions of wind blades, especially the large fluctuating displacement mean square deviation at both windward and leeward sides, among which the maximum response occurs in $350^{\circ}$ to the tower top under Condition 8; the maximum bending moment of tower bottom occurs in $330^{\circ}$ under Condition 2. The extreme displacement of blade top all exceeds 2.5 m under Condition 5, and the maximum value of windward displacement response for the tip of Blade 3 under Condition 8 could reach 3.35 m. All these results indicate that the influence of halt positions of different blades should be taken into consideration carefully when making wind-resistance design for large scale wind turbine tower.

Seismic performance assessment of single pipe piles using three-dimensional finite element modeling considering different parameters

  • Duaa Al-Jeznawi;Jitendra Khatti;Musab Aied Qissab Al-Janabi;Kamaldeep Singh Grover;Ismacahyadi Bagus Mohamed Jais;Bushra S Albusoda;Norazlan Khalid
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.455-475
    • /
    • 2023
  • The present study investigates the non-linear soil-pile interaction using three-dimensional (3D) non-linear finite element models. The numerical models were validated by using the results of extensive pile load and shaking table tests. The pile performance in liquefiable and non-liquefiable soil has been studied by analyzing the liquefaction ratio, pile lateral displacement (LD), pile bending moment (BM), and frictional resistance (FR) results. The pile models have been developed for the different ground conditions. The study reveals that the results obtained during the pile load test and shaking cycles have good agreement with the predicted pile and soil response. The soil density, peak ground acceleration (PGA), slenderness ratio (L/D), and soil condition (i.e., dry and saturated) are considered during modeling. Four ground motions are used for the non-linear time history analyses. Consequently, design charts are proposed depended on the analysis results to be used for design practice. Eleven models have been used to validate the capability of these charts to capture the soil-pile response under different seismic intensities. The results of the present study demonstrate that L/D ratio slightly affects the lateral displacement when compared with other parameters. Also, it has been observed that the increasing in PGA and decreasing L/D decreases the excess pore water pressure ratio; i.e., increasing PGA from 0.1 g to 0.82 g of loose sand model, decrease the liquefaction ratio by about 50%, and increasing L/D from 15 to 75 of the similar models (under Kobe earthquake), increase this ratio by about 30%. This study reveals that the lateral displacement increases nonlinearly under both dry and saturated conditions as the PGA increases. Similarly, it is observed that the BM increases under both dry and saturated states as the L/D ratio increases. Regarding the acceleration histories, the pile BM was reduced by reducing the acceleration intensity. Hence, the pile BM decreased to about 31% when the applied ground motion switched from Kobe (PGA=0.82 g) to Ali Algharbi (PGA=0.10 g). This study reveals that the soil conditions affect the relationship pattern between the FR and the PGA. Also, this research could be helpful in understanding the threat of earthquakes in different ground characteristics.

Study on the Response of Korean Ginseng (Panax ginsen◎ C.A. Meyer) to the Herbicide 2,4-D Application

  • Jo, Jae-Seong
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.149-154
    • /
    • 1990
  • Various rates of 2, 4-2 were sprayed on 2 and 3 year old ginseng plants as fouler spray to define the critical concentration. No apparent plant injury was noticeable for those ginseng plants when application concentration of 2, 4-D doubled the recommended dosage (70 mil 10a). Neither abnormal fouler change occurred nor any inhibition in leaf and stem growth was resulted for the plants treated with 2, 4-D concentrated two times of the recommended dosage. When the rates of 2, 4-D application were increased greater than this level, injury ratings increased linearly with the rates of 2, 4-D application and plant growth was inhibited. Ethylene gas was not produced from the ginseng plant treated with 2 times concentrated 2, 4-D, how- ever the ginseng plants produced 0.03 to 0.09 ppd ethylene gas when the rate of application were increased 3 and 4 times, respectively. On the other hand the soybean treated with the recommended amount of 2i-D produced ethylene gas of 10-20 times higher compared with ginseng plants and died. Photosynthesis ability of the ginseng leaf was significantly decreased by 2, 4.D fouler application but it was recovered 4 weeks after 2, 4-D fouler treatment. The herbicide 2, 4-D was appreciated to 2, 3 and 4 years old ginseng plants as fouler spray with the rates of 0.5, 1.0, 1.5 and 2.0 times of the recommended dosage to define the effects of 2, 4-D on the plant growth and root yield of the ginseng, There were no significant differences in the leaf and stem growth between untreated and 2, 4-D treated plant. Berry maturing of 3 and 4 year old ginseng was not influenced by 2, 4-D. The root weight of 4 years old ginseng plant was not reduced b). application of 2, 4-D concentrated 2 times of the recommended dosage. Application time of the herbicide 2, 4-D had no effects on the leaf or stem growth of 2, 3 and 4 year old year old ginseng plants. When the ginseng seedling was treated with 2, 4-D, detrimental phenomena as stem bending and deceleration of seedling leaf margin occurred, but stem bending was recovere d in a few day.

  • PDF

Inelastic Time History Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint on the response of RC OMRF are evaluated in the inelastic time history analysis. For an example, a 5-story structure for site class SB and seismic design category C was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was evaluated using fiber model and bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship. The hysteretic behavior was simulated using three-parameter model suggested in IDARC program. The inelastic time history analysis with PGA for return period of 2400 years showed that the model with inelastic beam-column joint yielded smaller maximum base shear force but nearly equivalent maximum roof displacement and maximum story drift as those obtained from analysis using rigid joint. The maximum story drift satisfied the criteria of KBC2009. Therefore, the inelastic shear behavior of beam-column joint could be neglected in the structural design.

Study on the Response of Korean Ginseng (Panax ginseng C.A. Meyer) to the Herbicide 2,4-D Application (고려인삼에 대한 제초제 2, 4-D의 반응연구)

  • Jo, Jae-Seong
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.291-296
    • /
    • 1990
  • Various rates of 2,4-D were sprayed on 2 and 3 year old ginseng plants as foliar spray to define the critical concentration. No apparent plant injury was noticable for those ginseng plants when application concentration of 2,4-D doubled the recommended dosage (70 ml/10a). Neither abnormal foliar change occurred nor any inhibition in leaf and stem growth was resulted for the plants treated with 2,4-D concentrated two times of the recommended dosage. When the rates of 2,4-D application were increased greater than this level, injury ratings increased linearly with the rates of 2,4-D application and plant you was inhibited. Ethylene gas was not produced from the ginseng plant treated with 2 times concentrated 2,4-D, however the ginseng plants produced 0.03 to 0.09 ppm ethylene gas when the rate of application were increased 3 and 4 times, respectively. On the other hand the soybean treated with the recommended amount of 21-D produced ethylene gas of 10-20 times higher compared with ginseng plants and died. Photosynthesis ability of the ginseng leaf was significantly decreased by 2,4-D foliar application but it was recovered 4 weeks after 2,4-D foliar treatment. The herbicide 2,4-D was applicated to 2,3 and 4 years old ginseng plants as foliar spray with the rates of 0.5, 1.0, 1.5 and 2.0 times of the recommended dosage to define the effects of 2,4-D on the plant growth and root yield of the ginseng. There were no significant differences in the leaf and stem growth between untreated and 2,4-D treated plant. Berry maturing of 3 and 4 year old ginseng was not influenced by 2,4-D. The root weight of 4 years old ginseng plant was not reduced by application of 2,4-D concenrated 2 times of the recommended dosage, Application time of the herbicide 2,4-D had no effects on the leaf or stem growth of 2,3 and 4 year old year old ginseng plants. When the ginseng seedling was treated with 2,4-D, detrimental phenomena as stem bending and docoration of seedling leaf margin occurred, but stem bending was recovered in a few day s. Keywords Panax ginseng C.A. Meyer, 2,4-D , herbicide.

  • PDF

Response of Korean ginseng (Panax ginseng C. A. Meyer) to 2, 4-D I . Effects of 2, 4-D concentrations on Growth and Root Yield (제초제 2, 4-D에 대한 고려인삼의 반응 I. 2, 4-D의 농도가 인삼의 생육 및 근수량이 미치는 영향)

  • 조재성
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.422-427
    • /
    • 1989
  • Weeds may compete detrimentally with the ginseng for moisture and nutrients but hand weeding is the only practical means of eliminating weeds after crop establishment. To define the effects of 2, 4-D herbicide application on the plant growth and root yield of Korean ginseng (Panax ginseng C. A. Meyer). the herbicide 2, 4-D was applied as a foliar spray with the rates of 0.5. 1.0. 1.5 and 2.0 times of the recommended herbicide dosage 70ml/l0a. The Korean ginseng treated with 2, 4-D in the rate of two times concentration was indistinguishable from nontreated plants in visual rating for foliar symptoms. There were no significant differences of the leaf length and width as well as the stem length and diameter in check plants and those recieving 2, 4-D treatments. The. berry maturing in 3 and 4-years old ginseng was not inhibited with 2, 4-D treatment. The root weight of the 4-years old ginseng plant was not reduced by 2, 4-D application of 2 times dosage. However. when the ginseng seedling was treated with 2, 4-D. detrimental phenomena as stem bending and dicoloration of marginal part of seedling leaf were occured but stem bending was recovered in a few days.

  • PDF