• Title/Summary/Keyword: bending resistance

Search Result 680, Processing Time 0.028 seconds

Evaluation of Fire Performance of RC Slabs with Half-Depth Precast Panels (반단면 프리캐스트 패널을 적용한 RC 슬래브의 내화성능 평가)

  • Chung, Chul-Hun;Im, Cho-Rong;Kim, Hyun-Jun;Joo, Sang-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.391-398
    • /
    • 2010
  • The fire performance of RC slabs with half-depth precast panel after exposure to the ISO-834 fire standard without loading has been experimentally investigated. During heating, according to the ISO 834 fire curve, concrete spalling was observed for concrete without PP(polypropylene) fibers. No spalling occurred when heating concrete containing PP fibers. The maximum temperature of RC slabs with PP fibers with half-depth precast panel was lower than that of concrete without PP fibers. The ultimate load after cooling of the RC slabs that were not loaded during the furnace tests was evaluated by means of 3 points bending tests. The ultimate load of the RC slabs without PP fibers showed a considerable reduction (around 32.5%) of the ultimate load after cooling if compared with of RC slabs with PP fibers. The ultimate load of the RC slabs with half-depth precast panel with PP fibers is higher than that of a full-depth RC slabs with PP fibers. Also, the addition of PP fibers and the use of half-depth precast panel improve fire resistance.

Corrosion Behavior and Ultrasonic Velocity in RC Beams with Various Cover Depth (다양한 피복두께를 가진 RC 보의 부식 거동 및 초음파 속도)

  • Jin-Won Nam;Hyun-Min Yang;Seung-Jun Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.184-191
    • /
    • 2023
  • With increasing corrosion in RC (Reinforced Concrete) structures, cracks occurred due to corrosion products and bearing load resistance decreased. In this study, corrosion was induced through an accelerated corrosion test (ICM: Impressed Current Method) with 140 hours of duration, and changes in USV (Ultra-Sonic Velocity), flexural failure load, and corrosion weight were evaluated before and after corrosion test. Three levels of cover depth (20 mm, 30 mm, and 40 mm) were considered, and the initial cracking period increased and the rust around steel decreased with increasing cover depth. In addition, the USV linearly decreased with decreasing cover depth and increasing amount of corrosion. In the flexural loading test, the bending capacity decreased by more than 10% due to corrosion, but a clear correlation could not be obtained since the corrosion ratio was small, so that the effect of slip was greater than that of reduced cross-sectional area of steel due to corrosion. As cover depth increased, the produced corrosion amount and USV changed with a clear linear relationship, and the cracking period due to corrosion could be estimated by the gradient of the measured corrosion current.

Reliability of Cu Interconnect under Compressive Fatigue Deformation Varying Interfacial Adhesion Treatment (유연소자용 기판과의 접착 특성에 따른 구리 배선의 압축 피로 거동 및 신뢰성)

  • Min Ju Kim;Jeong A Heo;Jun Hyeok Hyun;So-Yeon Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.105-111
    • /
    • 2023
  • Electronic devices have been evolved to be mechanically flexible that can be endured repetitive deformation. This evolution emphasizes the importance of long-term reliability in metal wiring connecting electronic components, especially under bending fatigue in compressed environments. This study investigated methods to enhance adhesion between copper (Cu) and polyimide (PI) substrates, aiming to improve the reliability of copper wiring under such conditions. We applied oxygen plasma treatment and introduced a chromium (Cr) adhesion layer to the polyimide substrate. Our findings revealed that these adhesion enhancement methods significantly affect compression fatigue behavior. Notably, the chromium adhesion layer, while showing weaker fatigue characteristics at 1.5% strain, demonstrated superior performance at 2.0% strain with no delamination, outperforming other methods. These results offer valuable insights for improving the reliability of flexible electronic devices, including reducing crack occurrence and enhancing fatigue resistance in their typical usage environments.

Evaluation of the Dynamic Behavior of Inclined Tripod Micropiles Using Dynamic Centrifuge Test (원심모형실험을 이용한 그룹 삼축 마이크로파일의 동적거동 평가)

  • Kim, Yoon-Ah;Kwon, Tae-Hyuk;Kim, Jongkwan;Han, Jin-Tae;Kim, Jae-Hyun;An, Sung-Yul
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.93-102
    • /
    • 2023
  • Despite recent modifications to building structural standards emphasizing the seismic stability of building foundations, the current design focus remains solely on vertical support, resulting in insufficient consideration of horizontal loads during earthquakes. In this study, we evaluated the dynamic behavior of inclined tripod micropiles (ITMP), which provide additional seismic resistance against horizontal and vertical loads during earthquakes. A comparison of the dynamic characteristics, such as acceleration, displacement, bending moment, and axial force, of ITMP with a 15° installation angle and normal vertical micropiles with a 0° installation angle was performed using dynamic centrifuge model tests. Results show that under moderate seismic loads, the proposed ITMP exhibited lower acceleration responses than the vertical micropiles. However, when subjected to a long-period strong seismic excitation, such as sine (2 Hz), ITMP showed greater responses than the vertical micropiles in terms of acceleration and settlement. These results indicate that the use of ITMP reduces the amplif ication of short-period (high-f requency) contents compared with the use of vertical micropiles. Therefore, ITMP can be used to enhance seismic performance of structures.

Dynamic Shear Behavior Characteristics of PHC Pile-cohesive Soil Ground Contact Interface Considering Various Environmental Factors (다양한 환경인자를 고려한 PHC 말뚝-사질토 지반 접촉면의 동적 전단거동 특성)

  • Kim, Young-Jun;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.5-14
    • /
    • 2024
  • PHC piles demonstrate superior resistance to compression and bending moments, and their factory-based production enhances quality assurance and management processes. Despite these advantages that have resulted in widespread use in civil engineering and construction projects, the design process frequently relies on empirical formulas or N-values to estimate the soil-pile friction, which is crucial for bearing capacity, and this reliance underscores a significant lack of experimental validation. In addition, environmental factors, e.g., the pH levels in groundwater and the effects of seawater, are commonly not considered. Thus, this study investigates the influence of vibrating machine foundations on PHC pile models in consideration of the effects of varying pH conditions. Concrete model piles were subjected to a one-month conditioning period in different pH environments (acidic, neutral, and alkaline) and under the influence of seawater. Subsequent repeated direct shear tests were performed on the pile-soil interface, and the disturbed state concept was employed to derive parameters that effectively quantify the dynamic behavior of this interface. The results revealed a descending order of shear stress in neutral, acidic, and alkaline conditions, with the pH-influenced samples exhibiting a more pronounced reduction in shear stress than those affected by seawater.

평행식 진동탄환 암거 천공기의 연구 (IV)(V)-실기 설계 제작 및 보장실험-Development of Balanced-Type Oscillating Mole Drainer(IV)(V)

  • 김용환;이승규;서상용
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-24
    • /
    • 1977
  • This paper is the forth and fifth one of the study on balanced type oscillating mole drainer. In the light of the results from previous reports about the model tests, some design criteria were established and a prototype machine was set up for experimental purpose. Motion characteristics and functionof the each parts of the machine were checked and analyzed. After that, performance tests of the prototype machine were carried out in thefield. Obtained results are summarized as follows ; 1. Ten centimeter of the bullet diameter was determined so as to be able to attach it to the tractors with capacity of 30 PS to 40 PS. 2. To maintain the balance between the moments of the front shank and rear shank, the oscillating amplitude of the rear bullet was determined to be larger than that of the front bullet. At the same time , the oscillating direction of the rear bullet was designed with the inclines of ten to thirty degrees. 3. An octagonal dynamo transduced was developed for measuring the compressive force of the upper link is measuring the draft force of the machine. Acceptable linear relationship between forces and strain responses from O.D.T. was obtained. 4. Analysing the balancing mechanism of the acting part of the machine , it was found that the total draft force of the machine was equal to the difference between the sum of the draft force produced from the right and left side bending moments of the lower drawber and the compressive force on the upper link. 5. There are acceptable linear relationship between the strain and twisting moment by driving shaft, and between strain and shank moment. Above results enable us to carry out the field experiment with prototype machine. 6. When the test machine was used in the field, it was possible to reduce the oscillating acceleration by forty percent in average as compared it with the single bullet mole drainer. 7. When the test machine was used under the oscillating condition, the dratt torce was reduced by 27 percent to 59 percent as compared it with the test machine under non-oscillating condition, while the draft force was increased by 7 percent to 20 percent as compared it with the mole drainer having oscillating single bullet. The reasoning behind this fact was considered as the resistance force due to the rear shank and bullet. 8. As the amplitude and frequency of the bullet were increased, the torque was increased accordingly. This tendency could be varied with the various characteristics of the given soils. And the larger frequency and amplitute, the more increasing oscil\ulcornerlating power but decreasing draft brce were needed, and draft force was increased as the velocity was increased.9. When the amplitude of the rear bullet was designed to be larger than that of the front bullet, the minimum value of the moment was lowered and oscillating acceleration was reduced. And when the oscillating direction of the rear bullet was declined back\ulcornerwards, oscillating acceleration was increased along with the increasing angle of decli\ulcornernation. When the test machine was operated in high speed, the difference between maximum moments and minimum ones became narrow. This varying magnitude of moments appeared on the moment oscillogram seems to be correlated to the oscillating acceleration and draft force. 10. From the analysis of variance, it was found that those factors such as frequency, amplitude, and operating velocity significantly affected in the oscillating acceleration, the draft resistance, the torque, the moment, and the total power required. And interaction between frequency and amplitude affected in the oscillating acceleration. 11. Within the given situation of this study, the most preferable operating conditions of the test machine were 7 Hz in oscillating frequency, 0.54 m/sec in operating velocity, and 39.1 mm in oscillating amplitude of front and rear bullets. However, it is necessary to select the proper frequency and magnitude of oscillation depending on the soil properties of the field in which the mole drainer is practiced by use of a bal1nced type oscillating mole drainer. 12. It is recommended that a comparative study of the mole drainers would be performed in the near future using two separate balanced oscillating bullet with the one which is operated by oscillating the movable bullet in a single cylinder or other balanced type which may be single oscillating bullet with spring, damper or balancing weight, and that of thing. To expand the applicability of the balanced type oscillating mole drainer in practical use, it is suggested to develop a new mechanism which perform mole drain with vinyl pipe or filling material such as rice hull.

  • PDF

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.

Evaluation of Stress Thresholds in Crack Development and Corrected Fracture Toughness of KURT Granite under Dry and Saturated Conditions (포화유무에 따른 KURT 화강암의 균열손상 기준 및 수정 파괴인성 측정(Level II Method))

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.256-269
    • /
    • 2020
  • The objective of this study is to evaluate the stress thresholds in crack development and the corrected fracture toughness of KURT granite under dry and saturated conditions. The stress thresholds were identified by calculation of inelastic volumetric strain from an uniaxial compression test. The corrected fracture toughness was estimated by using the Level II method (Chevron Bend specimen), suggested by ISRM (1988), in which non-linear behaviors of rock was taken into account. Average crack initiation stress(σci) and crack damage stress(σcd) under a dry condition were 91.1 MPa and 128.7 MPa. While, average crack initiation stress(σci) and crack damage stress(σcd) under a saturated condition were 58.2 MPa and 68.2 MPa. The crack initiation stress and crack damage stress of saturated ones decreased 36% and 47% respectively compared to those of dry specimens. A decrease in crack damage stress is relatively larger than that of crack initiation stress under a saturated condition. This indicates that the unstable crack growth can be more easily generated because of the saturation effect of water compared to the dry condition. The average corrected fracture toughness of KURT granite was 0.811 MPa·m0.5. While, the fracture toughness of saturated KURT granite(KCB) was 0.620 MPa·m0.5. The corrected fracture toughness of rock in saturated condition decreases by 23.5% compared to that in dry condition. It is found that the resistance to crack propagation decreases under the saturated geological condition.

Lateral Strength of Double-Bolt Joints to the Larix Glulam according to Bolt Spacing (볼트 간격에 따른 낙엽송 집성재 이중 볼트접합부의 전단강도)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • The lateral strength test of bending type was done to investigate the lateral capacity of the double bolt connection of domestic larix glulam according to bolt spacing. In the shear specimen, which is bolted connection in the inserted plate type, the hole of bolt was made, changing the diameter of bolt (12 mm and 16 mm), the number of bolt (single bolt : control and double bolt), the direction of bolt row (in parallel to grain : Type-A and in perpendicular to grain : Type-B) and the bolt spacing (Type-A : 4 d and 7 d and Type-B : 3 d and 5 d). Lateral capacity and failure mode of bolt connection were compared according to conditions. In prototype design (KBCS, 2000), the reduction factor of the allowable shear resistance that the bolt spacing is reduced was calculated. The results were as follows. 1) Bearing stress per bolt in the single and double bolt connection of Type-A was directly proportional to bolt diameter and bolt spacing. Bearing stress of Type-B decreased as bolt diameter was increased, and decreased by 2~10% when bolt diameter was increased. 2) In the single bolt connection and the double bolt connection of Type-A, the splitted failure was formed in the edge direction. When the bolt spacing was 3 d in Type-B, bolt was yielded more in the part of tension than in the part of compression, and the splitted failure started at the bolt in the part of tension. In the 5 d spacing specimen, the bolt in the part of tension was yielded similarly to bolt in the part of compression, and the splitted failure started in the part of compression. 3) In the prototype design, the reduction factor was calculated by non-dimensionizing the yielding load in the standard of bolt spacing (Type A : 7 d and Type B : 5 d). In 12 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.87 and 0.55, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.55, respectively. In 16 mm bolt connection, the reduction factor of bolt spacing 4 d (type-A) and single bolt connection was 0.96 and 0.76, respectively, and the reduction factor of bolt spacing 3 d (Type-B) and single bolt connection was 0.91 and 0.77, respectively.

A Study on the Fabrication of the Laminated Wood Composed of Poplar and Larch (포푸라와 일본잎갈나무의 집성재 제조에 관한 연구)

  • Jo, Jae-Myeong;Kang, Sun-Goo;Kim, Ki-Hyeon;Chung, Byeong-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.25-31
    • /
    • 1974
  • 1. Various gluing qualities applying Resorcinol Plyophen #6000 were studied on aiming the strength relationships of laminated woods resulted by single species [poplar (Populus deltoides), larch(Larix leptolepis)], mixed species of (poplar and larch), preservatives, treated poplar the scarf joint with mixed species of poplar and larch and the scarf joint treated with preservatives. 1. 1 On the block shear and on the DVL tension test, the mean wood failure ratio showed an excellent value i.e., above 65% and the tangential strength for larch was higher than that of radial, but it was reversed for poplar as shown in Tables 1 and 2. 1. 2 The lamina treated with Na-PCP reduced slightly the strength but the limited strength allowed for manufacturing laminated wood was not influenced by treating Na-PCP as shown in Tables 3 and 4. 1. 3 The safe scarf ratio in the plane scarf joint was above 1/12 for larch and 1/6 for poplar regard less of the chemical treatment or untreatment as shown in Tables. 5, 6, 7 and 8. 2. In the normal and boiled state, the gluing quality of the laminated wood composed of single[poplar (Populus deltoides), larch (Larix leptolepis)] and double species (poplar and larch) glued with Resorcinol Plyophen #6000 were measured as follow, and also represented the delamination of the same laminated wood. 2.1 The normal block shear strength of the straight and curved laminated wood (in life size) were more than three times of the standards adhesion strength. And, the value of the boiled stock was decreased to one half of the standard shear adhesion strength, but it was more than twice the standard strength for the boiled stock. Thus, it was recognized that the water resistance of the Resorcinol Plyophen #6000 was very high as shown in Tables 9 and 10. 2. 2 The delamination ratio of the straight and curved laminated woods in respect of their composition were decraesed, in turn, in the following order i. e., larch, mixed stock (larch+poplar) and poplar. The maximum value represented by the larch was 3.5% but it was below the limited value as shown in Table 11. 3. The various strengthes i.e., compressive, bending and adhesion obtainted by the straight laminaced wood which were constructed by five plies of single and double species of lamina i. e., larch (Larix leptolepis) and poplar (Populus euramericana), glued with urea resin were shown as follows: 3. 1 If desired a higher strength of architectural laminated wood composed of poplar (P) and larch (L), the combination of the laminas should be arranged as follows, L+P+L+P+L as shown in Table 12. 3.2 The strength of laminated wood composed of laminas which included pith and knots was conside rably decreased than that of clear lamina as shown Table 13. 3.3 The shear strength of the FPL block of the straight laminated wood constructed by the same species which were glued with urea adhesives was more than twice the limited adhesion strength, thus it makes possible to use it for interior constructional stock.

  • PDF