• Title/Summary/Keyword: bending moment effect

Search Result 374, Processing Time 0.02 seconds

Design Methodology on Steel-type Breakwater II. Pile Design Procedure (철재형 이안제 설계기법 연구 II. 하부기초 설계 단계)

  • Kwon, Oh-Kyun;Oh, Se-Boong;Kweon, Hyuck-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.219-228
    • /
    • 2011
  • In this paper, the design procedure of substructure of the steel-type breakwater was described and the actual foundation design was performed for the test bed. The site investigation was executed at the Osan-port area, in Uljin, Gyeongbuk, where the steeltype detached breakwater is constructed. The foundation mainly depends on the lateral load and uplift force due to the wave force. Since the superstructure is stuck out about 9.0m from the ocean bed, the foundation must resist on the lateral force and bending moment. After considering various factors, the foundation type of this structure was determined by the steel pipe pile(${\varphi}711{\times}t12mm$). On the stability of pile foundation, the safety factors of the pile on the compressive, lateral and uplift forces were grater than the minimum factor of safety. The displacements of pile under the working load were evaluated as the values below the permissible ones. Based on the subgrade reaction method, we evaluated the relationship of subgrade reaction and displacement for the lateral and the vertical directions in the layers. The structural analyses along with the foundation were perfomed and the effect of pile foundations were compared quantitatively.

Estimation of Structural Strength for Spudcan in the Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 스퍼드캔 구조강도 예측법)

  • Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.141-152
    • /
    • 2022
  • As interest increases related to the development of eco-friendly energy, the offshore wind turbine market is growing at an increasing rate every year. In line with this, the demand for an installation vessel with large scaled capacity is also increasing rapidly. The wind turbine installation vessel (WTIV) is a fixed penetration of the spudcan in the sea-bed to install the wind turbine. At this time, a review of the spudcan is an important issue regarding structural safety in the entire structure system. In the study, we analyzed the current procedure suggested by classification of societies and new procedures reflect the new loading scenarios based on reasonable operating conditions; which is also verified through FE-analysis. The current procedure shows that the maximum stress is less than the allowable criteria because it does not consider the effect of the sea-bed slope, the leg bending moment, and the spudcan shape. However, results of some load conditions as defined by the new procedure confirm that it is necessary to reinforce the structure to required levels under actual pre-load conditions. Therefore, the new procedure considers additional actual operating conditions and the possible problems were verified through detailed FE-analysis.

Analysis of Dynamic Behavior on Group Piles in Two-Layered Sandy Ground (이층지반에 설치된 무리말뚝의 동적 거동 분석)

  • Heungtae Kim;Hongsig Kang;Kusik Jeong;Kwangkuk Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.51-58
    • /
    • 2023
  • The dynamic behavior of the group piles supporting the superstructure in an earthquake is influenced by different complex dynamic mechanisms by the inertia force of the superstructure and the kinematic force of the ground. In an earthquake, The dynamic p-y curve is used to analyze the dynamic behavior of the pile foundation in consideration of the interaction of the ground, pile foundation, and superstructure due to the inertia force and the kinematic force. Most of the research has been conducted in order to confirm the dynamic p-y curve of the pile foundation by applying to the pile foundation installed on the single layered ground consisting of sand and clay, but the research for the multiple layered ground is insufficient. In this study, 1g shaking table tests were conducted to analyze the effect of the strata ratio of the top and bottom ground of the two layered sandy ground which has different relative densities on the dynamic behavior of group piles supporting the superstructure. The result shows that the maximum acceleration in the ground, the pile cap, and the superstructure increases as the strata ratio increases, and the location of the maximum bending moment of the pile foundation is changed. In addition, it was confirmed that the slope of the dynamic p-y curve of the pile foundation increased and decreased according to the strata ratio.

Structural Behavior of the Buried flexible Conduits in Coastal Roads Under the Live Load (활하중이 작용하는 해안도로 하부 연성지중구조물의 거동 분석)

  • Cho, Sung-Min;Chang, Yong-Chai
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.323-328
    • /
    • 2002
  • Soil-steel structures have been used for the underpass, or drainage systems in the road embankment. This type of structures sustain external load using the correlations with the steel wall and engineered backfill materials. Buried flexible conduits made of corrugated steel plates for the coastal road was tested under vehicle loading to investigate the effects of live load. Testing conduits was a circular structure with a diameter of 6.25m. Live-load tests were conducted on two sections, one of which an attempt was made to reinforce the soil cover with the two layers of geo-gird. Hoop fiber strains of corrugated plate, normal earth pressures exerted outside the structure, and deformations of structure were instrumented during the tests. This paper describes the measured static and dynamic load responses of structure. Wall thrust by vehicle loads increased mainly at the crown and shoulder part of the conduit. However additional bending moment by vehicle loads was neglectable. The effectiveness of geogrid-reinforced soil cover on reducing hoop thrust is also discussed based on the measurements in two sections of the structure. The maximum thrusts at the section with geogrid-reinforced soil cover was 85-92% of those with un-reinforced soil cover in the static load tests of the circular structure; this confirms the beneficial effect of soil cover reinforcement on reducing the hoop thrust. However, it was revealed that the two layers of geogrid had no effect on reducing the overburden pressure at the crown level of structure. The obtained values of DLA decrease approximately in proportion to the increase in soil cover from 0.9m to 1.5m. These values are about 1.2-1.4 times higher than those specified in CHBDC.