• Title/Summary/Keyword: bending endurance test

Search Result 21, Processing Time 0.024 seconds

Reliability Evaluation on Pultrusion Composite Sandwich Panel (Pultrusion 복합 샌드위치 패널의 신뢰성 평가)

  • Lee, Haksung;Kim, Eunsung;Oh, Jeha;Kim, Dongki;Lee, Juyoung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.414-420
    • /
    • 2013
  • Research on decreasing the weight of composite sandwich panels is in progress. This paper reports the experimental results for the mechanical behavior of a composite sandwich panel. The skins of sandwich panels were made of glass fiber sheets and plywood matrix composites. Their interior layers consisted of glass fiber pultrusion pipes and gold foam. Experimental tests were performed to obtain the mechanical properties and complex mechanical behavior. Before fatigue tests, tensile tests and 3-point bending tests were carried out to obtain the optimal design and determine their strength and failure mechanisms in the flat-wise position. After the static test, a fatigue test were conducted at a load frequency of 5 Hz, stress ratio (R) of 0.1, and endurance limit for the S-N curve. It showed that the failure modes were related to both the core design and skin failure.

Comparison of Fatigue Strength Criteria for TiNi/Al6061-T6 and TiNi/Al2024-T4 Shape Memory Alloy Composite (TiNi/Al6061-T6과 TiNi/Al2024-T4 형상기억복합재료에 대한 피로강도기준의 비교)

  • Jo, Young-Jik;Park, Young-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.2
    • /
    • pp.99-107
    • /
    • 2009
  • This study produced a design curve and fatigue limit for a variation in volume ratio and reduction ratio of TiNi/Al composites. In many cases, stress-life curve does not indicate fatigue limit, so it was presented by probabilistic-stress-life curve. Goodman diagram was used to analyze the fatigue strength of materials with a finite life determined by repeated load and the fatigue strength of endurance limit with an infinite life. The fatigue experiment was conducted using the scenk-type plane bending specimen in same shape. The result of the fatigue test, which had been conducted under consistent stress amplitude, was examined. (i) The optimal condition for TiNi/Al in accordance with hot pressing (ii) Impacts of fatigue limit caused by a variation in reduction ratio and volume ratio of TiNi/Al composites (iii) Probability distribution for fatigue limit of TiNi/Al2024 and TiNi/Al6061.

Development and Durability Evaluation of a Bimaterial Composite Frame by Pultrusion Process (인발성형 공정을 통한 이종재료 복합소재 프레임 개발 및 내구성 평가)

  • Lee, Haksung;Kang, Shinjae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.145-151
    • /
    • 2014
  • Recently, the growing demand for weight reduction and improved structure durabilityfor commercial vehicles has led to active research into the development and application of suitablecomposite materials. This studysuggests abimaterial composite frame produced by apultrusion process to replace steel frames. We focused on the development of a composite frameconsisting of two types of materialsby mixing anorthotropic material with anisotropic material. The inside layer consisted of an aluminum pipe, and the outside layer was composed of a glass fiber pipe. To determine the strength and failure mechanisms of the composite material, tensile tests, shear tests, and three-point bending tests were conducted, followed by fatigue tests. After static testing, the fatigue tests were conducted at a load frequency of 5 Hz, a stress ratio (R) of 0.1, and an endurance limit of $10^6$ for the S-N curve. The resultsshowed that the failure modes were related to both the core design and the laminating conditions.

Quantitative Study on Threshold Condition of Critical Non-propagating Crack (임계정류피로크랙의 하한계 전파조건의 정량적 고찰)

  • Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.17-23
    • /
    • 2010
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the micro-structure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the "critical non-propagating crack length" It is found that the reduction of the endurance limit of their particular micro-structures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress ${\sigma}_{wo}$ and the critical non-propagating crack length $L_c$ can be written as ${\sigma}_{wo}{^m}{\cdot}L_c=C$ where m,C is constant. Further experiments were carried out on cyclic loading history on the length of critical non-propagating crack. It shown that the length of critical non-propagating crack is closely related to cyclic loading history.

  • PDF

The Effect of Exercise Program on Chronic Low Back Pain in Female Teachers of Elementary School (만성요통 여교사에 대한 운동프로그램의 효과 - 근력, 근지구력, 유연성, 통증, 기능장애, 우울 및 생활만족도를 중심으로 -)

  • Choi, Soon-Young
    • Women's Health Nursing
    • /
    • v.7 no.2
    • /
    • pp.169-187
    • /
    • 2001
  • This study was performed to probe the effect of exercise program on muscle strength, endurance, flexibility, pain, disability level and life satisfaction in female teachers of elementary school who complain of low back pain. For this study, 44 female teachers aged 30-50 years with mechanical low back pain of 6 months' duration, who had the structural normalities in the lumbar spine, were recruited from April 1 to July 10 1999. Twenty three out of them were assigned to the experimental group and twenty one to the control group. The exercise program consisted of education on right postures, the etiology and diagnosis of low back pain, and exercise intervention such as muscle relaxation, elongation and strengthening. With 8 weeks program, the subjects received two sessions of education and six sessions of group exercise in the 1st week, while three sessions of group exercise and four sessions of individual exercise weekly and two sessions of education during the later 7 weeks. The muscle strength and endurance were measured by Cybex 770, the flexibility by flexibility measurement machine, the intensity of pain by Visual Analogue Scale (VAS), the level of disability by Oswestry low back pain disability scale, depression by Beck depression inventory (BDI), and life satisfaction by Life satisfaction index-Z. Study measurements were taken before and after 8 weeks exercise program. Data were analyzed using paired t-test, t-test, and ANCOVA. The results were as follows ; 1. The flexors and extensors peak torque and flexors peak torque per body weight of experimental group were significantly increased at test velocities $30^{\circ}$/sec, $60^{\circ}$/sec compared with those of control group. There was no significant difference in extensors peak torque per flexors peak torque at $30^{\circ}/sec$, $60^{\circ}/sec$ between experimental and control group. 2. The flexors and extensors total work and flexors total work per body weight of experimental group were significantly increased at $120^{\circ}/sec$, compared with those of control group. 3.The flexibility of lumbar spine in experimental group was significantly increased compared with that of control group. The pains in anterior, posterior, left lateral and right lateral bending and in rotation of experimental group were significantly increased compared with those of control group. 4. The Oswestry disability scores of experimental and control group were significantly decreased, and there was no difference in the Oswestry disability score change between experimental and control group. 5. The scores of BDI of experimental group were significantly decreased compared with those of control group. Life satisfaction index-Z scores of experimental group were not changed, but those of control group were significantly decreased. There was no difference in the score change of Life satisfaction index-Z between experimental and control group. 6. ANCOVA analysis for the data variables of inhomogeneous baseline represented that there was no significant difference in extensors peak torque and extensors total work at $120^{\circ}/sec$ and extensor total work per body weight at $120^{\circ}/sec$ change between experimental group and control group. These findings indicate that the exercise program could be effective in increasing the muscle strength, endurance, flexibility and decreasing pain, improving depression in female teachers of elementary school with chronic low back pain. It is suggested that the exercise program could be an essential factor for the effective nursing intervention to the patients suffered from chronic low back pain.

  • PDF

Physical and Mechanical Properties and Fire-endurance Characteristics of Recycled Particleboards

  • Suh, Jin-Suk;Han, Tae-Hyung;Park, Joo-Saeng;Park, Jong-Young
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.475-486
    • /
    • 2008
  • In this study, fire-retardant chemicals were melt with mixed composition ratios of dibasic ammonium phosphate and each half of boric acid and borax in hot water, in which hammer-milled chips were immersed to increase swelling of waste particleboards. Also, fire-retardant treated particles from sawn lumber chip and recycled particleboard chip were composed in ratio of 70:30 in core layer to improve boards' properties. Retention ratio of fire-retardant chemicals for the particles for face layer was high due to high specific surface area, and that of sawn lumber chips was somewhat higher than that of recycled particleboard chips. The mixture of particles from sawn lumber chips and recycled PB of 70:30 in weight ratio exceeded bending strength of 100 $kgf/cm^2$. It seemed that the relatively greater portions of dibasic ammonium phosphate affected adversely to dimensional stability, however fire-retardants treatment resulted in distinct effect lowering formaldehyde emission such as $E_0$ type(0.5mg/$\ell$ or less) in KS F 3104. In fire-retardancy, the recycled boards with a mixed ratio of dibasic ammonium phosphate to boric acid borax(50:50 mixture) of 70% to 30% in weight satisfied fire-retardancy 3rd grade in KS F 2271, and also this composition from cone calorimeter test met same standard grade figuring total heat release of 4.6MJ/$m^2$.

  • PDF

Threshold Condition for the Propagation of Short Fatigue Crack (炭素鋼 微小疲勞크랙 전파의 不限界條件)

  • 김민건
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.505-512
    • /
    • 1988
  • Since the propagation of a short fatigue crack is directly related to the large crack which causes the fracture of bulk specimen, the detailed study on the propagation of the short crack is essential to prevent the fatigue fracture. However, a number of recent studies have demonstrated that the short crack can grow at a low applied stress level which are predicted from the threshold condition of large crack. In present study, the threshold condition for the propagation of short fatigue crack is examined with respect to the microstructure and cyclic loading history. Specimens employed in this study were decarburized eutectoid steels which have various decarburized ferrite volume fraction. Rotating bending fatigue test was carried out on these specimens with the special emphasis on the '||'&'||'quot;critical non-propagating crack length.'||'&'||'quot; It is found that the reduction of the endurance limit of their particular microstructures can be due to the increase of the length of critical non-propagating crack, and the quantitative relationship between the threshold stress .DELTA. .sigma. $_{th}$ and the critical non-propagating crack length Lc can be written as .DELTA. .sigma. $_{th}$, Lc=C where m, C is constant. Further experiments were carried out on the effect of pearlitic structure and cyclic loading history on the length of critical non-propagating crack. It is shown that the length of critical non-propagating crack is closely related to both pearlite interlamellar spacing and cyclic loading history.ory. cyclic loading history.

Developing High Altitude Long Endurance (HALE) Solar-powered Unmanned Aerial Vehicle (UAV) (고고도 장기체공 태양광 무인기 개발)

  • Hwang, SeungJae;Kim, SangGon;Lee, YungGyo
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • Korea Aerospace Research Institute (KARI) is developing an electric-driven HALE UAV in order to secure system and operational technologies since 2010. Based on the 5 years of flight tests and design experiences of the previously developed electric-driven UAVs, KARI has designed EAV-3, a solar-powered HALE UAV. EAV-3 weighs 53 kg, the structure weight is 21 kg, and features a flexible wing of 19.5 m in span with the aspect ratio of 17.4. Designing the main wing and empennage of the EAV-3 the amount of the bending due to the flexible wing, 404 mm at 1-G flight condition based on T-800 composite material, and side wind effects due to low cruise speed, V_cr = 6 m/sec, are carefully considered. Also, unlike the general aircraft there is no center of gravity shift during the flight. Thus, the static margin cuts down to 28.4% and center of gravity moves back to 31% of the Mean Aerodynamic Chord (MAC) comparing to the previously developed scale-down HALE UAVs, EAV-2 and EAV-2H, to minimize a trim drag and enhance a performance of the EAV-3. The first flight of the EAV-3 has successfully conducted on the July 29, 2015 and the test flight above the altitude 14 km has efficiently achieved on the August 5, 2015 at the Goheung aviation center.

Effect of Functional Rehabilitation Exercise for Correct Posture on Physical Balance and Physical Factors

  • Soo Yong PARK;Jin Wook JUNG;Mun Young HEO;Seung Jin HAN
    • Journal of Sport and Applied Science
    • /
    • v.7 no.3
    • /
    • pp.19-26
    • /
    • 2023
  • Purpose: This study attempted to investigate the effect of functional rehabilitation exercise for posture correction on physical strength factors and physical balance. Research design, data, and methodology: It consisted of 40 experimental groups that applied functional rehabilitation exercises to 80 people with posture imbalance and 40 comparative groups that performed general exercises, and was conducted four times a week, once for 40 minutes, and for 12 weeks. Results: D.S. (p<.o1) among F.M.S., a moving assessment. It increased significantly from the dictionary, and H.S. (p<.o5). I.L(p<.o5). S.M(p<.o5). A.S.L.R(p<.o5). T.S.P(p<.o01). It was confirmed that R.S. (p<.o5) decreased more after than before. In other words, Functional rehabilitation exercise was effective in improving physical balance. PAPS flexibility (bending forward) (p<.o1). Muscle strength (grip strength test) (p<.o1). Quickness (long jump) (p<.o1). Functional rehabilitation exercise was found to be effective in muscle strength, agility, and flexibility, but not in cardiopulmonary endurance. Pain: Based on the NRS scale (1-10 points). The experimental that there was a significant interaction between the groups.(F=38.583, P=.000). In the comparative group, there was no significant difference in the pre-post, and it was found that the pain level in the experimental group decreased after the pre-post (p<.001). Conclusion: As a result of the above study, it was confirmed that functional rehabilitation exercise improves physical strength factors and physical balance ability, and also affects physical pain reduction due to physical imbalance.

Inconel 718 and UNSM Treated Alloy Study on the Rotary Bending High Temperature Fatigue Characteristics under a Light Concentrating System (인코넬 718강의 UNSM처리재의 고온하의 피로특성에 관한 연구)

  • Suh, Chang Min;Nahm, Seung Hoon;Woo, Young Han;Hor, Kwang Ho;Hong, Sang Hwui;Kim, Jun Hyong;Pyun, Young Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.935-941
    • /
    • 2016
  • This study investigated the influence of high temperature and UNSM on the fatigue behavior of Inconel 718 alloy at RT, 300, 500, and $600^{\circ}C$. Fatigue properties of Inconel 718 were reduced at high temperatures compared to those at room temperature. However, the endurance limit was similar to that of the room temperature sample at the design stress level. High-temperature fatigue characteristics of the UNSM-treated specimen were significantly improved at the design stress level as compared to the untreated specimens. Specifically, the influence of temperature on the S-N curves at the design stress level of the UNSM-treated specimen showed the tendency of longer fatigue lives than those of untreated ones. Researchers can obtain rotary fatigue test results simply by heating specimens with a halogen lamp to precise temperatures during specific operations.